120 research outputs found

    k-stretchability of entanglement, and the duality of k-separability and k-producibility

    Get PDF
    The notions of k-separability and k-producibility are useful and expressive tools for the characterization of entanglement in multipartite quantum systems, when a more detailed analysis would be infeasible or simply needless. In this work we reveal a partial duality between them, which is valid also for their correlation counterparts. This duality can be seen from a much wider perspective, when we consider the entanglement and correlation properties which are invariant under the permutations of the subsystems. These properties are labeled by Young diagrams, which we endow with a refinement-like partial order, to build up their classification scheme. This general treatment reveals a new property, which we call k-stretchability, being sensitive in a balanced way to both the maximal size of correlated (or entangled) subsystems and the minimal number of subsystems uncorrelated with (or separable from) one another

    Semantic Interpretation of an Artificial Neural Network

    Get PDF
    Recent advances in machine learning theory have opened the door for applications to many difficult problem domains. One area that has achieved great success for stock market analysis/prediction is artificial neural networks. However, knowledge embedded in the neural network is not easily translated into symbolic form. Recent research, exploring the viability of merging artificial neural networks with traditional rule-based expert systems, has achieved limited success. In particular, extracting production (IF.. THEN) rules from a trained neural net based on connection weights provides a valid set of rules only when neuron outputs are close to 0 or 1 (e.g. the output sigmoid function is saturated). This thesis presents two new ways to interpret neural network knowledge. The first, called Knowledge Math, extends the use of connection weights, generating rules for general (i.e. non-binary) input and output values. The second method, based on decision boundaries, utilizes the inherent border between output classification regions to draw symbolic interpretation. The Decision Boundary method generates more complex symbolic rules than Knowledge Math, but provides valid feature relationships in the uncertain regions around the midpoints of the neuron output functions. The main result is a complementary relationship between Knowledge Math and Decision Boundaries, as well as subsymbolic and symbolic knowledge representations for a general multi-layer perceptron

    Space-Efficient Graph Coarsening with Applications to Succinct Planar Encodings

    Get PDF
    We present a novel space-efficient graph coarsening technique for n-vertex planar graphs G, called cloud partition, which partitions the vertices V(G) into disjoint sets C of size O(log n) such that each C induces a connected subgraph of G. Using this partition ? we construct a so-called structure-maintaining minor F of G via specific contractions within the disjoint sets such that F has O(n/log n) vertices. The combination of (F, ?) is referred to as a cloud decomposition. For planar graphs we show that a cloud decomposition can be constructed in O(n) time and using O(n) bits. Given a cloud decomposition (F, ?) constructed for a planar graph G we are able to find a balanced separator of G in O(n/log n) time. Contrary to related publications, we do not make use of an embedding of the planar input graph. We generalize our cloud decomposition from planar graphs to H-minor-free graphs for any fixed graph H. This allows us to construct the succinct encoding scheme for H-minor-free graphs due to Blelloch and Farzan (CPM 2010) in O(n) time and O(n) bits improving both runtime and space by a factor of ?(log n). As an additional application of our cloud decomposition we show that, for H-minor-free graphs, a tree decomposition of width O(n^{1/2 + ?}) for any ? > 0 can be constructed in O(n) bits and a time linear in the size of the tree decomposition. A similar result by Izumi and Otachi (ICALP 2020) constructs a tree decomposition of width O(k ?n log n) for graphs of treewidth k ? ?n in sublinear space and polynomial time

    C*-Algebren

    Get PDF
    The theory of C*-algebras plays a major role in many areas of modern mathematics, like Non-commutative Geometry, Dynamical Systems, Harmonic Analysis, and Topology, to name a few. The aim of the conference “C*-algebras” is to bring together experts from all those areas to provide a present day picture and to initiate new cooperations in this fast growing mathematical field

    On Approximability, Convergence, and Limits of CSP Problems

    Get PDF
    This thesis studies dense constraint satisfaction problems (CSPs), and other related optimization and decision problems that can be phrased as questions regarding parameters or properties of combinatorial objects such as uniform hypergraphs. We concentrate on the information that can be derived from a very small substructure that is selected uniformly at random. In this thesis, we present a unified framework on the limits of CSPs in the sense of the convergence notion of Lovasz-Szegedy that depends only on the remarkable connection between graph sequences and exchangeable arrays established by Diaconis-Janson. In particular, we formulate and prove a representation theorem for compact colored r-uniform directed hypergraphs and apply this to rCSPs. We investigate the sample complexity of testable r-graph parameters, and discuss a generalized version of ground state energies (GSE) and demonstrate that they are efficiently testable. The GSE is a term borrowed from statistical physics that stands for a generalized version of maximal multiway cut problems from complexity theory, and was studied in the dense graph setting by Borgs et al. A notion related to testing CSPs that are defined on graphs, the nondeterministic property testing, was introduced by Lovasz-Vesztergombi, which extends the graph property testing framework of Goldreich-Goldwasser-Ron in the dense graph model. In this thesis, we study the sample complexity of nondeterministically testable graph parameters and properties and improve existing bounds by several orders of magnitude. Further, we prove the equivalence of the notions of nondeterministic and deterministic parameter and property testing for uniform dense hypergraphs of arbitrary rank, and provide the first effective upper bound on the sample complexity in this general case

    On regular but non-smooth integral curves

    Full text link
    Given a regular but non-smooth geometrically integral curve over an imperfect field, we establish a bound for the number of iterated Frobenius pullbacks needed in order to transform a non-smooth non-decomposed point into a rational point. This provides an algorithm to compute geometric δ\delta-invariants of non-smooth points and a procedure to construct fibrations with moving singularities of prescribed δ\delta-invariants. We show that the bound is sharp in characteristic 2, and we further study the geometry of a pencil of plane projective rational quartics in characteristic 2 whose generic fibre attains our bound. On our way, we prove several results on separable and non-decomposed points that might be of independent interest.Comment: 20 pages. v2: substantially expanded version, with new material on separable and non-decomposed points. Comments are still very welcome
    • …
    corecore