649 research outputs found

    Grammatical structures and logical deductions

    Get PDF
    The three essays presented here concern natural connections between grammatical derivations and structures provided by certain standard grammar formalisms, on the one hand, and deductions in logical systems, on the other hand. In the first essay we analyse the adequacy of Polish notation for higher-order languages. The Ajdukiewicz algorithm (Ajdukiewicz 1935) is discussed in terms of generalized MP-deductions. We exhibit a failure in Ajdukiewicz’s original version of the algorithm and give a correct one; we prove that generalized MP-deductions have the frontier property, which is essential for the plausibility of Polish notation. The second essay deals with logical systems corresponding to different grammar formalisms, as e.g. Finite State Acceptors, Context-Free Grammars, Categorial Grammars, and others. We show how can logical methods be used to establish certain linguistically significant properties of formal grammars. The third essay discusses the interplay between Natural Deduction proofs in grammar oriented logics and semantic structures expressible by typed lambda terms and combinators

    TR-2009003: On Proof Realization on Modal Logic

    Full text link

    Bell's Theorem, Many Worlds and Backwards-Time Physics: Not Just a Matter of Interpretation

    Get PDF
    The classic "Bell's Theorem" of Clauser, Holt, Shimony and Horne tells us that we must give up at least one of: (1) objective reality (aka "hidden variables"); (2) locality; or (3) time-forwards macroscopic statistics (aka "causality"). The orthodox Copenhagen version of physics gives up the first. The many-worlds theory of Everett and Wheeler gives up the second. The backwards-time theory of physics (BTP) gives up the third. Contrary to conventional wisdom, empirical evidence strongly favors Everett-Wheeler over orthodox Copenhagen. BTP has two major variations -- a many-worlds version, and a neoclassical version of partial differential equations (PDE) in the spirit of Einstein. Section 2 discusses quantum measurement according to BTP, focusing on how we represent condensed matter objects like polarizers in a Bell's Theorem experiment or in tests of Hawking's cosmology. The Backwards Time Telegraph, though speculative, is discussed.Comment: 15 pages, 29 refs, 2 figures, 11 equations. Revision adds brief appendix on opto-electronic circuit design issues to detect or exploit backwards time effect

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Security of Quantum Key Distribution

    Full text link
    We propose various new techniques in quantum information theory, including a de Finetti style representation theorem for finite symmetric quantum states. As an application, we give a proof for the security of quantum key distribution which applies to arbitrary protocols.Comment: PhD thesis; index adde

    A categorical semantics for causal structure

    Get PDF
    We present a categorical construction for modelling causal structures within a general class of process theories that include the theory of classical probabilistic processes as well as quantum theory. Unlike prior constructions within categorical quantum mechanics, the objects of this theory encode fine-grained causal relationships between subsystems and give a new method for expressing and deriving consequences for a broad class of causal structures. We show that this framework enables one to define families of processes which are consistent with arbitrary acyclic causal orderings. In particular, one can define one-way signalling (a.k.a. semi-causal) processes, non-signalling processes, and quantum nn-combs. Furthermore, our framework is general enough to accommodate recently-proposed generalisations of classical and quantum theory where processes only need to have a fixed causal ordering locally, but globally allow indefinite causal ordering. To illustrate this point, we show that certain processes of this kind, such as the quantum switch, the process matrices of Oreshkov, Costa, and Brukner, and a classical three-party example due to Baumeler, Feix, and Wolf are all instances of a certain family of processes we refer to as SOCn\textrm{SOC}_n in the appropriate category of higher-order causal processes. After defining these families of causal structures within our framework, we give derivations of their operational behaviour using simple, diagrammatic axioms.Comment: Extended version of a LICS 2017 paper with the same titl
    • …
    corecore