22 research outputs found

    Mixing Biometric Data For Generating Joint Identities and Preserving Privacy

    Get PDF
    Biometrics is the science of automatically recognizing individuals by utilizing biological traits such as fingerprints, face, iris and voice. A classical biometric system digitizes the human body and uses this digitized identity for human recognition. In this work, we introduce the concept of mixing biometrics. Mixing biometrics refers to the process of generating a new biometric image by fusing images of different fingers, different faces, or different irises. The resultant mixed image can be used directly in the feature extraction and matching stages of an existing biometric system. In this regard, we design and systematically evaluate novel methods for generating mixed images for the fingerprint, iris and face modalities. Further, we extend the concept of mixing to accommodate two distinct modalities of an individual, viz., fingerprint and iris. The utility of mixing biometrics is demonstrated in two different applications. The first application deals with the issue of generating a joint digital identity. A joint identity inherits its uniqueness from two or more individuals and can be used in scenarios such as joint bank accounts or two-man rule systems. The second application deals with the issue of biometric privacy, where the concept of mixing is used for de-identifying or obscuring biometric images and for generating cancelable biometrics. Extensive experimental analysis suggests that the concept of biometric mixing has several benefits and can be easily incorporated into existing biometric systems

    Multibiometric System Combining Iris and Retina

    Get PDF
    Tato diplomová práce se zabývá multibiometrickými systémy, specificky potom biometrickou fúzí. Práce popisuje biometrii oka, tedy rozpoznávání na základě sítnice a duhovky. Stěžejní část tvoří návrh a implementace biometrického systému, který je založený na rozpoznání sítnice a duhovky.This diploma thesis focuses on multibiometric systems, specifically on biometric fusion. The thesis describes eye biometrics, i.e. recognition based on retina and iris. The key part consists of design and implementation specification of a biometric system based on retina and iris recognition.

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Recognition of Nonideal Iris Images Using Shape Guided Approach and Game Theory

    Get PDF
    Most state-of-the-art iris recognition algorithms claim to perform with a very high recognition accuracy in a strictly controlled environment. However, their recognition accuracies significantly decrease when the acquired images are affected by different noise factors including motion blur, camera diffusion, head movement, gaze direction, camera angle, reflections, contrast, luminosity, eyelid and eyelash occlusions, and problems due to contraction and dilation. The main objective of this thesis is to develop a nonideal iris recognition system by using active contour methods, Genetic Algorithms (GAs), shape guided model, Adaptive Asymmetrical Support Vector Machines (AASVMs) and Game Theory (GT). In this thesis, the proposed iris recognition method is divided into two phases: (1) cooperative iris recognition, and (2) noncooperative iris recognition. While most state-of-the-art iris recognition algorithms have focused on the preprocessing of iris images, recently, important new directions have been identified in iris biometrics research. These include optimal feature selection and iris pattern classification. In the first phase, we propose an iris recognition scheme based on GAs and asymmetrical SVMs. Instead of using the whole iris region, we elicit the iris information between the collarette and the pupil boundary to suppress the effects of eyelid and eyelash occlusions and to minimize the matching error. In the second phase, we process the nonideal iris images that are captured in unconstrained situations and those affected by several nonideal factors. The proposed noncooperative iris recognition method is further divided into three approaches. In the first approach of the second phase, we apply active contour-based curve evolution approaches to segment the inner/outer boundaries accurately from the nonideal iris images. The proposed active contour-based approaches show a reasonable performance when the iris/sclera boundary is separated by a blurred boundary. In the second approach, we describe a new iris segmentation scheme using GT to elicit iris/pupil boundary from a nonideal iris image. We apply a parallel game-theoretic decision making procedure by modifying Chakraborty and Duncan's algorithm to form a unified approach, which is robust to noise and poor localization and less affected by weak iris/sclera boundary. Finally, to further improve the segmentation performance, we propose a variational model to localize the iris region belonging to the given shape space using active contour method, a geometric shape prior and the Mumford-Shah functional. The verification and identification performance of the proposed scheme is validated using four challenging nonideal iris datasets, namely, the ICE 2005, the UBIRIS Version 1, the CASIA Version 3 Interval, and the WVU Nonideal, plus the non-homogeneous combined dataset. We have conducted several sets of experiments and finally, the proposed approach has achieved a Genuine Accept Rate (GAR) of 97.34% on the combined dataset at the fixed False Accept Rate (FAR) of 0.001% with an Equal Error Rate (EER) of 0.81%. The highest Correct Recognition Rate (CRR) obtained by the proposed iris recognition system is 97.39%

    Development of Multirate Filter – Based Region Features for Iris Identification

    Get PDF
    The emergence of biometric system is seen as the next-generation technological solution in strengthening the social and national security. The evolution of biometrics has shifted the paradigm of authentication from classical token and knowledge-based systems to physiological and behavioral trait based systems. R & D on iris biometrics, in last one decade, has established it as one of the most promising traits. Even though, iris biometric takes high resolution near-infrared (NIR) images as input, its authentication accuracy is very commendable. Its performance is often influenced by the presence of noise, database size, and feature representation. This thesis focuses on the use of multi resolution analysis (MRA) in developing suitable features for non-ideal iris images. Our investigation starts with the iris feature extraction technique using Cohen −Daubechies − Feauveau 9/7 (CDF 9/7) filter bank. In this work, a technique has been proposed to deal with issues like segmentation failure and occlusion. The experimental studies deal with the superiority of CDF 9/7 filter bank over the frequency based techniques. Since there is scope for improving the frequency selectivity of CDF 9/7 filter bank, a tunable filter bank is proposed to extract region based features from non-cooperative iris images. The proposed method is based on half band polynomial of 14th order. Since, regularity and frequency selectivity are in inverse relationship with each other, filter coefficients are derived by not imposing maximum number of zeros. Also, the half band polynomial is presented in x-domain, so as to apply semidefinite programming, which results in optimization of coefficients of analysis/synthesis filter. The next contribution in this thesis deals with the development of another powerful MRA known as triplet half band filter bank (THFB). The advantage of THFB is the flexibility in choosing the frequency response that allows one to overcome the magnitude constraints. The proposed filter bank has improved frequency selectivity along with other desired properties, which is then used for iris feature extraction. The last contribution of the thesis describes a wavelet cepstral feature derived from CDF 9/7 filter bank to characterize iris texture. Wavelet cepstrum feature helps in reducing the dimensionality of the detail coefficients; hence, a compact feature presentation is possible with improved accuracy against CDF 9/7. The efficacy of the features suggested are validated for iris recognition on three publicly available databases namely, CASIAv3, UBIRISv1, and IITD. The features are compared with other transform domain features like FFT, Gabor filter and a comprehensive evaluation is done for all suggested features as well. It has been observed that the suggested features show superior performance with respect to accuracy. Among all suggested features, THFB has shown best performance

    Novel Approaches to Improve Iris Recognition System Performance Based on Local Quality Evaluation and Feature Fusion

    Get PDF
    For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks’ information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples’ own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system

    Privacy-Preserving Face Recognition with Outsourced Computation

    Get PDF
    Face recognition is one of the most important biometrics pattern recognitions, which has been widely applied in a variety of enterprise, civilian and law enforcement. The privacy of biometrics data raises important concerns, in particular if computations over biometric data is performed at untrusted servers. In previous work of privacy-preserving face recognition, in order to protect individuals\u27 privacy, face recognition is performed over encrypted face images. However, these results increase the computation cost of the client and the face database owners, which may enable face recognition cannot be efficiently executed. Consequently, it would be desirable to reduce computation over sensitive biometric data in such environments. Currently, no secure techniques for outsourcing face biometric recognition is readily available. In this paper, we propose a privacy-preserving face recognition protocol with outsourced computation for the first time, which efficiently protects individuals\u27 privacy. Our protocol substantially improves the previous works in terms of the online computation cost by outsourcing large computation task to a cloud server who has large computing power. In particular, the overall online computation cost of the client and the database owner in our protocol is at most 1/2 of the corresponding protocol in the state of the art algorithms. In addition, the client requires the decryption operations with only O(1)O(1) independent of MM, where MM is the size of the face database. Furthermore, the client can verify the correction of the recognition result

    Tracing Phantasms: Envisioning the Haunted Novel in Roberto Bolaño’s 2666 and Gerald Murnane’s The Plains

    Get PDF
    The thesis proposes a theory of the haunted novel as a way of identifying a kind of literature that expresses relation to silent (or silenced) cultural memories through distinctive use of visual devices, which the thesis refers to as ‘phantasms’. Through the tracing of phantasms represented in the novels 2666 by Roberto Bolaño and The Plains by Gerald Murnane, the thesis imagines the haunted novel as a literary expression of unsettled history

    Performance analysis of multimodal biometric fusion

    Get PDF
    Biometrics is constantly evolving technology which has been widely used in many official and commercial identification applications. In fact in recent years biometric-based authentication techniques received more attention due to increased concerns in security. Most biometric systems that are currently in use typically employ a single biometric trait. Such systems are called unibiometric systems. Despite considerable advances in recent years, there are still challenges in authentication based on a single biometric trait, such as noisy data, restricted degree of freedom, intra-class variability, non-universality, spoof attack and unacceptable error rates. Some of the challenges can be handled by designing a multimodal biometric system. Multimodal biometric systems are those which utilize or are capable of utilizing, more than one physiological or behavioural characteristic for enrolment, verification, or identification. In this thesis, we propose a novel fusion approach at a hybrid level between iris and online signature traits. Online signature and iris authentication techniques have been employed in a range of biometric applications. Besides improving the accuracy, the fusion of both of the biometrics has several advantages such as increasing population coverage, deterring spoofing activities and reducing enrolment failure. In this doctoral dissertation, we make a first attempt to combine online signature and iris biometrics. We principally explore the fusion of iris and online signature biometrics and their potential application as biometric identifiers. To address this issue, investigations is carried out into the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. We compare the results of the multimodal approach with the results of the individual online signature and iris authentication approaches. This dissertation describes research into the feature and decision fusion levels in multimodal biometrics.State of Kuwait – The Public Authority of Applied Education and Trainin
    corecore