561 research outputs found

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    A delay-based dynamic scheduling algorithm for bag-of-task workflows with stochastic task execution times in clouds

    Full text link
    [EN] Bag-of-Tasks (BoT) workflows are widespread in many big data analysis fields. However, there are very few cloud resource provisioning and scheduling algorithms tailored for BoT workflows. Furthermore, existing algorithms fail to consider the stochastic task execution times of BoT workflows which leads to deadline violations and increased resource renting costs. In this paper, we propose a dynamic cloud resource provisioning and scheduling algorithm which aims to fulfill the workflow deadline by using the sum of task execution time expectation and standard deviation to estimate real task execution times. A bag-based delay scheduling strategy and a single-type based virtual machine interval renting method are presented to decrease the resource renting cost. The proposed algorithm is evaluated using a cloud simulator ElasticSim which is extended from CloudSim. The results show that the dynamic algorithm decreases the resource renting cost while guaranteeing the workflow deadline compared to the existing algorithms. (C) 2017 Elsevier B.V. All rights reserved.The authors would like to thank the reviewers for their constructive and useful comments. This work is supported by the National Natural Science Foundation of China (Grant No. 61602243 and 61572127), the Natural Science Foundation ofJiangsu Province (Grant No. BK20160846), Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Nanjing University of Science and Technology, Grant No. 30916014107), the Fundamental Research Funds for the Central University (Grant No. 30916015104). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD" (No. DP12015-65895-R) co-financed by FEDER funds.Cai, Z.; Li, X.; Ruiz García, R.; Li, Q. (2017). A delay-based dynamic scheduling algorithm for bag-of-task workflows with stochastic task execution times in clouds. Future Generation Computer Systems. 71:57-72. https://doi.org/10.1016/j.future.2017.01.020S57727

    Constructing Reliable Computing Environments on Top of Amazon EC2 Spot Instances

    Get PDF
    Cloud provider Amazon Elastic Compute Cloud (EC2) gives access to resources in the form of virtual servers, also known as instances. EC2 spot instances (SIs) offer spare computational capacity at steep discounts compared to reliable and fixed price on-demand instances. The drawback, however, is that the delay in acquiring spots can be incredible high. Moreover, SIs may not always be available as they can be reclaimed by EC2 at any given time, with a two-minute interruption notice. In this paper, we propose a multi-workflow scheduling algorithm, allied with a container migration-based mechanism, to dynamically construct and readjust virtual clusters on top of non-reserved EC2 pricing model instances. Our solution leverages recent findings on performance and behavior characteristics of EC2 spots. We conducted simulations by submitting real-life workflow applications, constrained by user-defined deadline and budget quality of service (QoS) parameters. The results indicate that our solution improves the rate of completed tasks by almost 20%, and the rate of completed workflows by at least 30%, compared with other state-of-the-art algorithms, for a worse-case scenarioinfo:eu-repo/semantics/publishedVersio

    A Cloud-Based Framework for Machine Learning Workloads and Applications

    Get PDF
    [EN] In this paper we propose a distributed architecture to provide machine learning practitioners with a set of tools and cloud services that cover the whole machine learning development cycle: ranging from the models creation, training, validation and testing to the models serving as a service, sharing and publication. In such respect, the DEEP-Hybrid-DataCloud framework allows transparent access to existing e-Infrastructures, effectively exploiting distributed resources for the most compute-intensive tasks coming from the machine learning development cycle. Moreover, it provides scientists with a set of Cloud-oriented services to make their models publicly available, by adopting a serverless architecture and a DevOps approach, allowing an easy share, publish and deploy of the developed models.This work was supported by the project DEEP-Hybrid-DataCloud ``Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud'' that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant 777435Lopez Garcia, A.; Marco De Lucas, J.; Antonacci, M.; Zu Castell, W.; David, M.; Hardt, M.; Lloret Iglesias, L.... (2020). A Cloud-Based Framework for Machine Learning Workloads and Applications. IEEE Access. 8:18681-18692. https://doi.org/10.1109/ACCESS.2020.2964386S1868118692

    Taxonomy of Cloud Lock-in Challenges

    Get PDF
    This chapter reviews key concepts and terminologies needed for understanding the complexity of the vendor lock-in problem being investigated in this book. Firstly, we present aspects of cloud computing that contribute to vendor lock-in and briefly introduce existing results from cloud-related areas of computer science that contributes to understanding and tackling vendor lock-in. Secondly, we explore the literature on proprietary lock-in risks in cloud computing environments to identify its causes (i.e., restrictions), consequences, mitigations strategies, and related challenges faced by enterprise consumers migrating to cloud-based services. Then, we propose taxonomy of cloud lock-in perspectives based on reports of real experiences on migration to understand the overall cloud SaaS migration challenges. Finally, we narrow down to our perspective on cloud lock-in to three main perspectives which takes the use of sound techniques from IS research discipline and cloud-related literature into consideration, to improve the portability, security and interoperability of cloud (and on-premise) applications in hybrid environments. Collectively, the discussions presented herein, accordingly enables both academia and IT practitioners in the cloud computing community to get an overarching view of the process of combating application and data lock-in challenges, and security risks in the cloud

    A systems thinking approach to business intelligence solutions based on cloud computing

    Get PDF
    Thesis (S.M. in System Design and Management)--Massachusetts Institute of Technology, Engineering Systems Division, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 73-74).Business intelligence is the set of tools, processes, practices and people that are used to take advantage of information to support decision making in the organizations. Cloud computing is a new paradigm for offering computing resources that work on demand, are scalable and are charged by the time they are used. Organizations can save large amounts of money and effort using this approach. This document identifies the main challenges companies encounter while working on business intelligence applications in the cloud, such as security, availability, performance, integration, regulatory issues, and constraints on network bandwidth. All these challenges are addressed with a systems thinking approach, and several solutions are offered that can be applied according to the organization's needs. An evaluations of the main vendors of cloud computing technology is presented, so that business intelligence developers identify the available tools and companies they can depend on to migrate or build applications in the cloud. It is demonstrated how business intelligence applications can increase their availability with a cloud computing approach, by decreasing the mean time to recovery (handled by the cloud service provider) and increasing the mean time to failure (achieved by the introduction of more redundancy on the hardware). Innovative mechanisms are discussed in order to improve cloud applications, such as private, public and hybrid clouds, column-oriented databases, in-memory databases and the Data Warehouse 2.0 architecture. Finally, it is shown how the project management for a business intelligence application can be facilitated with a cloud computing approach. Design structure matrices are dramatically simplified by avoiding unnecessary iterations while sizing, validating, and testing hardware and software resources.by Eumir P. Reyes.S.M.in System Design and Managemen

    Research challenges for cross-cloud applications.

    Get PDF
    corecore