3,839 research outputs found

    Common pulse retrieval algorithm: a fast and universal method to retrieve ultrashort pulses

    Full text link
    We present a common pulse retrieval algorithm (COPRA) that can be used for a broad category of ultrashort laser pulse measurement schemes including frequency-resolved optical gating (FROG), interferometric FROG, dispersion scan, time domain ptychography, and pulse shaper assisted techniques such as multiphoton intrapulse interference phase scan (MIIPS). We demonstrate its properties in comprehensive numerical tests and show that it is fast, reliable and accurate in the presence of Gaussian noise. For FROG it outperforms retrieval algorithms based on generalized projections and ptychography. Furthermore, we discuss the pulse retrieval problem as a nonlinear least-squares problem and demonstrate the importance of obtaining a least-squares solution for noisy data. These results improve and extend the possibilities of numerical pulse retrieval. COPRA is faster and provides more accurate results in comparison to existing retrieval algorithms. Furthermore, it enables full pulse retrieval from measurements for which no retrieval algorithm was known before, e.g., MIIPS measurements

    EU accession and Poland's external trade policy

    Get PDF
    No description supplie

    On statistical approaches to generate Level 3 products from satellite remote sensing retrievals

    Get PDF
    Satellite remote sensing of trace gases such as carbon dioxide (CO2_2) has increased our ability to observe and understand Earth's climate. However, these remote sensing data, specifically~Level 2 retrievals, tend to be irregular in space and time, and hence, spatio-temporal prediction is required to infer values at any location and time point. Such inferences are not only required to answer important questions about our climate, but they are also needed for validating the satellite instrument, since Level 2 retrievals are generally not co-located with ground-based remote sensing instruments. Here, we discuss statistical approaches to construct Level 3 products from Level 2 retrievals, placing particular emphasis on the strengths and potential pitfalls when using statistical prediction in this context. Following this discussion, we use a spatio-temporal statistical modelling framework known as fixed rank kriging (FRK) to obtain global predictions and prediction standard errors of column-averaged carbon dioxide based on Version 7r and Version 8r retrievals from the Orbiting Carbon Observatory-2 (OCO-2) satellite. The FRK predictions allow us to validate statistically the Level 2 retrievals globally even though the data are at locations and at time points that do not coincide with validation data. Importantly, the validation takes into account the prediction uncertainty, which is dependent both on the temporally-varying density of observations around the ground-based measurement sites and on the spatio-temporal high-frequency components of the trace gas field that are not explicitly modelled. Here, for validation of remotely-sensed CO2_2 data, we use observations from the Total Carbon Column Observing Network. We demonstrate that the resulting FRK product based on Version 8r compares better with TCCON data than that based on Version 7r.Comment: 28 pages, 10 figures, 4 table

    The Belgian repository of fundamental atomic data and stellar spectra (BRASS). I. Cross-matching atomic databases of astrophysical interest

    Full text link
    Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. We report the cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that ~2% of our line list and Vienna Atomic Line Database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines with different log(gf) values, and discuss the impact of these uncertain log(gf) values on quantitative spectroscopy. All cross-matched atomic data and duplicate transitions are available to download at brass.sdf.org.Comment: 18 pages, 12 figures, 9 tables. Accepted for publication in A&

    Manipulating cues in involuntary autobiographical memory: verbal cues are more effective than pictorial cues

    Get PDF
    In two experiments, pictorial cues were compared with their verbal labels to assess their effectiveness in eliciting involuntary autobiographical memories. Cues were relatively complex in Experiment 1 (e.g., relaxing on a beach) and simple objects in Experiment 2 (e.g., a ball). In both experiments, participants went through a vigilance task in which they were presented with frequent nontarget and rare target visual stimuli. Pictures or their corresponding verbal labels were also displayed on both target and nontarget stimuli, but participants were told that these were irrelevant to the task. They were asked to interrupt the vigilance task whenever they became aware of task-unrelated mental contents and to report them. In both experiments, more involuntary memories were elicited in the verbal cue condition, rather than in the pictorial cue condition. This result is discussed in relation to previous work that highlighted the greater effectiveness of verbal cues in memory tasks

    Multiple Retrieval Models and Regression Models for Prior Art Search

    Get PDF
    This paper presents the system called PATATRAS (PATent and Article Tracking, Retrieval and AnalysiS) realized for the IP track of CLEF 2009. Our approach presents three main characteristics: 1. The usage of multiple retrieval models (KL, Okapi) and term index definitions (lemma, phrase, concept) for the three languages considered in the present track (English, French, German) producing ten different sets of ranked results. 2. The merging of the different results based on multiple regression models using an additional validation set created from the patent collection. 3. The exploitation of patent metadata and of the citation structures for creating restricted initial working sets of patents and for producing a final re-ranking regression model. As we exploit specific metadata of the patent documents and the citation relations only at the creation of initial working sets and during the final post ranking step, our architecture remains generic and easy to extend

    Peer to Peer Information Retrieval: An Overview

    Get PDF
    Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these have seen widespread real- world adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralised solutions. In this paper we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralised client-server solutions in terms of scalability, performance, user satisfaction and freedom
    corecore