205 research outputs found

    TokenSplit: Using Discrete Speech Representations for Direct, Refined, and Transcript-Conditioned Speech Separation and Recognition

    Full text link
    We present TokenSplit, a speech separation model that acts on discrete token sequences. The model is trained on multiple tasks simultaneously: separate and transcribe each speech source, and generate speech from text. The model operates on transcripts and audio token sequences and achieves multiple tasks through masking of inputs. The model is a sequence-to-sequence encoder-decoder model that uses the Transformer architecture. We also present a "refinement" version of the model that predicts enhanced audio tokens from the audio tokens of speech separated by a conventional separation model. Using both objective metrics and subjective MUSHRA listening tests, we show that our model achieves excellent performance in terms of separation, both with or without transcript conditioning. We also measure the automatic speech recognition (ASR) performance and provide audio samples of speech synthesis to demonstrate the additional utility of our model.Comment: INTERSPEECH 2023, project webpage with audio demos at https://google-research.github.io/sound-separation/papers/tokenspli

    A HIERARCHY BASED ACOUSTIC FRAMEWORK FOR AUDITORY SCENE ANALYSIS

    Get PDF
    The acoustic environment surrounding us is extremely dynamic and unstructured in nature. Humans exhibit a great ability at navigating these complex acoustic environments, and can parse a complex acoustic scene into its perceptually meaningful objects, referred to as ``auditory scene analysis". Current neuro-computational strategies developed for auditory scene analysis related tasks are primarily based on prior knowledge of acoustic environment and hence, fail to match human performance under realistic settings, i.e. the acoustic environment being dynamic in nature and presence of multiple competing auditory objects in the same scene. In this thesis, we explore hierarchy based computational frameworks that not only solve different auditory scene analysis related paradigms but also explain the processes driving these paradigms from physiological, psychophysical and computational viewpoint. In the first part of the thesis, we explore computational strategies that can extract varying degree of details from complex acoustic scene with an aim to capture non-trivial commonalities within a sound class as well as differences across sound classes. We specifically demonstrate that a rich feature space of spectro-temporal modulation representation complimented with markovian based temporal dynamics information captures the fine and subtle changes in the spectral and temporal structure of sound events in a complex and dynamic acoustic environment. We further extend this computational model to incorporate a biologically plausible network capable of learning a rich hierarchy of localized spectro-temporal bases and their corresponding long term temporal regularities from natural soundscape in a data driven fashion. We demonstrate that the unsupervised nature of the network yields physiologically and perceptually meaningful tuning functions that drive the organization of acoustic scene into distinct auditory objects. Next, we explore computational models based on hierarchical acoustic representation in the context of bottom-up salient event detection. We demonstrate that a rich hierarchy of local and global cues capture the salient details upon which the bottom-up saliency mechanisms operate to make a "new" event pop out in a complex acoustic scene. We further show that a top-down event specific knowledge gathered by scene classification framework biases bottom-up computational resources towards events of "interest" rather than any new event. We further extend the top-down framework in the context of modeling a broad and heterogeneous acoustic class. We demonstrate that when an acoustic scene comprises of multiple events, modeling the global details in the hierarchy as a mixture of temporal trajectories help to capture its semantic categorization and provide a detailed understanding of the scene. Overall, the results of this thesis improve our understanding of how a rich hierarchy of acoustic representation drives various auditory scene analysis paradigms and how to integrate multiple theories of scene analysis into a unified strategy, hence providing a platform for further development of computational scene analysis research

    XVII. Magyar Számítógépes Nyelvészeti Konferencia

    Get PDF

    Behavior quantification as the missing link between fields: Tools for digital psychiatry and their role in the future of neurobiology

    Full text link
    The great behavioral heterogeneity observed between individuals with the same psychiatric disorder and even within one individual over time complicates both clinical practice and biomedical research. However, modern technologies are an exciting opportunity to improve behavioral characterization. Existing psychiatry methods that are qualitative or unscalable, such as patient surveys or clinical interviews, can now be collected at a greater capacity and analyzed to produce new quantitative measures. Furthermore, recent capabilities for continuous collection of passive sensor streams, such as phone GPS or smartwatch accelerometer, open avenues of novel questioning that were previously entirely unrealistic. Their temporally dense nature enables a cohesive study of real-time neural and behavioral signals. To develop comprehensive neurobiological models of psychiatric disease, it will be critical to first develop strong methods for behavioral quantification. There is huge potential in what can theoretically be captured by current technologies, but this in itself presents a large computational challenge -- one that will necessitate new data processing tools, new machine learning techniques, and ultimately a shift in how interdisciplinary work is conducted. In my thesis, I detail research projects that take different perspectives on digital psychiatry, subsequently tying ideas together with a concluding discussion on the future of the field. I also provide software infrastructure where relevant, with extensive documentation. Major contributions include scientific arguments and proof of concept results for daily free-form audio journals as an underappreciated psychiatry research datatype, as well as novel stability theorems and pilot empirical success for a proposed multi-area recurrent neural network architecture.Comment: PhD thesis cop

    Applications

    Get PDF

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required

    Structural Health Monitoring Damage Detection Systems for Aerospace

    Get PDF
    This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation
    • …
    corecore