57 research outputs found

    Dynamic and reliable Information Accessing and Management in Heterogeneous Wireless Networks

    Get PDF

    Implementation and Evaluation of A Low-Cost Intrusion Detection System For Community Wireless Mesh Networks

    Get PDF
    Rural Community Wireless Mesh Networks (WMN) can be great assets to rural communities, helping them connect to the rest of their region and beyond. However, they can be a liability in terms of security. Due to the ad-hoc nature of a WMN, and the wide variety of applications and systems that can be found in such a heterogeneous environment there are multiple points of intrusion for an attacker. An unsecured WMN can lead to privacy and legal problems for the users of the network. Due to the resource constrained environment, traditional Intrusion Detection Systems (IDS) have not been as successful in defending these wireless network environments, as they were in wired network deployments. This thesis proposes that an IDS made up of low cost, low power devices can be an acceptable base for a Wireless Mesh Network Intrusion Detection System. Because of the device's low power, cost and ease of use, such a device could be easily deployed and maintained in a rural setting such as a Community WMN. The proposed system was compared to a standard IDS solution that would not cover the entire network, but had much more computing power but also a higher capital cost as well as maintenance costs. By comparing the low cost low power IDS to a standard deployment of an open source IDS, based on network coverage and deployment costs, a determination can be made that a low power solution can be feasible in a rural deployment of a WMN

    Testing the performance and feasibility of Bluetooth communications in pervasive systems

    Get PDF
    Smart and mobile environments require seamless connections. However, due to the frequent process of ''discovery'' and disconnection of mobile devices while data interchange is happening, wireless connections are often interrupted. To minimize this drawback, a protocol that enables an easy and fast synchronization is crucial. Bearing this in mind, Bluetooth technology appears to be a suitable solution to carry on such connections due to the discovery and pairing capabilities it provides. Nonetheless, the time and energy spent when several devices are being discovered and used at the same time still needs to be managed properly. It is essential that this process of discovery takes as little time and energy as possible. In addition to this, it is believed that the performance of the communications is not constant when the transmission speeds and throughput increase, but this has not been proved formally. Therefore, the purpose of this project is twofold: Firstly, to design and build a framework-system capable of performing controlled Bluetooth device discovery, pairing and communications. Secondly, to analyze and test the scalability and performance of the \emph{classic} Bluetooth standard under different scenarios and with various sensors and devices using the framework developed. To achieve the first goal, a generic Bluetooth platform will be used to control the test conditions and to form a ubiquitous wireless system connected to an Android Smartphone. For the latter goal, various stress-tests will be carried on to measure the consumption rate of battery life as well as the quality of the communications between the devices involved

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed
    • …
    corecore