1,935 research outputs found

    Perancangan Balancing Robot Beroda Dua Dengan Metode Pengendali PID Berbasis Arduino Nano

    Get PDF
    Balancing robot adalah  robot beroda dua dengan badan robot diasumsikan sebagai pendulum terbalik. Sistem ini tidak stabil karena ketika kereta beroda diberi gangguan dari luar maka pendulum akan jatuh. Untuk mempertahankan agar tidak jatuh maka posisi pendulum harus dipertahankan seimbang. Oleh karena dibutuhkan suatu sistem kendali yang berfungsi untuk mempertahankan posisi pemdulum. Permasalahan yang ada disini adalah bagaimana membuat robot tetap stabil tegak lurus dengan permukaan bumi. Pada penelitian ini ditawarkan metode kendali PID (Proporsional, Integral dan Derivatif) berbasis Arduino Nano. Dalam pembuatan Balancing robot menggunakan sensor GY-521 MPU-6050 Module untuk mendeteksi kemiringan robot, dengan penggerak robotnya menggunakan motor DC 6V 620 RPM  gearbox 25ga370. Hasil yang didapat dari penelitian ini adalah Balancing robot dapat menyeimbangkan diri pada ACC Ydan ACC Z. Pengendali PID ditanamkan pada mikrokontroler Arduino nano dengan nilai Kp =  60, Ki = 2.0 dan Kd = 130. Kata Kunci— Balancing robot, kendali PID, Arduino nano.Balancing robot is a two-wheels robot with a robot body assumed to be an inverted pendulum. This system is unstable because when the robot is disturbed from outside the pendulum will fall. To keep from falling, the position of the pendulum must be keep in balance. Therefore we need a control system that functions to keep the position of the pemdulum. The problem here is how to make the robot remain stable perpendicular to the surface of the earth. In this study, the PID (Proportional, Integral and Derivative) PID control method based on  Arduino Nano. To build the balancing robot, it uses a GY-521 MPU-6050 module sensor to detect the tilt of the robot, with the robot drive using a DC 6V 620 RPM gearbox 25ga370 motor. The results obtained from this research is the balancing robot can balance itself on Axis Y 220 and Axis Z -40. The PID controller is implanted in Arduino nano with values Kp = 60, Ki = 2.0 and Kd = 130.Keywords — Balancing robot, PID controller, Arduino nano

    Computer vision based two-wheel self-balancing Rover featuring Arduino and Raspberry Pi

    Get PDF
    Holistic control system for a self-balancing robot with two wheels with several functionalities added to it, such as remote terminal control, and computer vision based algorithms

    The generation of dual wavelength pulse fiber laser using fiber bragg grating

    Get PDF
    A stable simple generation of dual wavelength pulse fiber laser on experimental method is proposed and demonstrated by using Figure eight circuit diagram. The generation of dual wavelength pulse fiber laser was proposed using fiber Bragg gratings (FBGs) with two different central wavelengths which are 1550 nm and 1560 nm. At 600 mA (27.78 dBm) of laser diode, the stability of dual wavelength pulse fiber laser appears on 1550 nm and 1560 nm with the respective peak powers of -54.03 dBm and -58.00 dBm. The wavelength spacing of the spectrum is about 10 nm while the signal noise to ratio (SNR) for both peaks are about 8.23 dBm and 9.67 dBm. In addition, the repetition rate is 2.878 MHz with corresponding pulse spacing of about 0.5 ÎŒs, is recorded

    Regression between headmaster leadership, task load and job satisfaction of special education integration program teacher

    Get PDF
    Managing school is a daunting task for a headmaster. This responsibility is exacerbated when it involves the Special Education Integration Program (SEIP). This situation requires appropriate and effective leadership in addressing some of the issues that are currently taking place at SEIP such as task load and job satisfaction. This study aimed to identify the influence of headmaster leadership on task load and teacher job satisfaction at SEIP. This quantitative study was conducted by distributing 400 sets of randomized questionnaires to SEIP teachers across Malaysia through google form. The data obtained were then analyzed using Structural Equation Modeling (SEM) and AMOS software. The results show that there is a significant positive effect on the leadership of the headmaster and the task load of the teacher. Likewise, the construct of task load and teacher job satisfaction has a significant positive effect. However, for the construct of headmaster leadership and teacher job satisfaction, there was no significant positive relationship. This finding is very important as a reference to the school administration re-evaluating their leadership so as not to burden SEIP teachers and to give them job satisfaction. In addition, the findings of this study can also serve as a guide for SEIP teachers to increase awareness of the importance of managing their tasks. This study also focused on education leadership in general and more specifically on special education leadership

    TWO WHEELS SELF-BALANCING ROBOT BERBASIS ARDUINO NANO MENGGUNAKAN METODE PID

    Get PDF
    Self-balancing robot merupakan robot yang dapat menjaga keseimbangan dirinya sendiri. Two wheels self-balancing robot memiliki roda di kedua sisinya dan  dapat menyeimbangkan dirinya dengan mengatur kecepatan motor berdasarkan sensor gyroscope dan accelerometer. Terdapat beberapa teknik kontrol yang dapat digunakan untuk self-balancing robot, yaitu proportional-integral-derivative (PID), fuzzy logic, dan linear quadratic regulator (LQR). Dalam penelitian ini dibuat two wheels self-balancing robot dengan mikrokontroler Arduino Nano menggunakan metode kontrol PID. Sensor yang digunakan adalah MPU-6050 yang merupakan gabungan gyroscope dan accelerometer. Complementary filter digunakan untuk menggabungkan data kedua sensor tersebut dan untuk mengontrol motor DC yang ada pada robot digunakan driver motor L293D. Kata kunci: robot, self-balancing, Arduino, MPU-6050, PI

    PERANCANGAN DAN IMPLEMENTASI FUZZY LOGIC CONTROL UNTUK PENGATURAN KESTABILAN GERAK PADA TWO WHEELS SELF BALANCING

    Get PDF
    Two Wheels Self Balancing Robot merupakan robot yang memiliki prinsip kerja seperti pendulum terbalik yang dapat mempertahankan keseimbangan robot dan tegak lurus terhadap permukaan bumi pada bidang datar. Pada balancing robot ini menggunakan pengendali Fuzzy Logic Controller. Penelitian ini menggunakan hardware MPU-6050 sebagai sensor, Arduino Uno R3 sebagai mikrokontroler, dan motor DC sebagai aktuator. Metode Fuzzy Logic Control digunakan untuk mengatur nilai pwm motor agar dapat bergerak maju dan mundur untuk menjaga keseimbangan. Motor bergerak maju dan mundur untuk mempertahankan posisi keseimbangan. Proses konversi nilai accelerometer dan gyroscope yang tidak stabil mempengaruhi kestabilan robot dalam mempertahankan keseimbangan. Performansi dari sistem balancing robot untuk pengaplikasian metode fuzzy logic dipengaruhi oleh beberapa parameter seperti, besar nilai dan bentuk dari fungsi keanggotaan masukan dan keluaran sistem, dan rule-inference yang ditanamkan pada sistem. Pengujian pada balancing robot dilakukan sebanyak empat kali percobaaan dengan kemiringan 0° sampai 15°. Hasil penelitian ini menunjukkan bahwa sistem pengendalian two wheels self balancing robot berbasis fuzzy logic controller dapat menyeimbangkan dengan stabil pada kemiringan di bawah 15 derajat, di atas 15 derajat motor tidak dapat mengembalikan robot pada keadaan tegak berdiri. Kata Kunci: Two Wheels Self Balancing Robot, Fuzzy Logic Controller, Arduino Uno R3, Sensor MPU-6050, Motor DC

    Design and implementation control system for a self-balancing robot based on internet of things by using Arduino microcontroller

    Get PDF
    This project is designed for attempting on developing an autonomous self-balancing robot. In this work, the two-wheel robotic system consists of a microcontroller (Arduino), Dc motor, and sensor. The Arduino is used to read the sensor data and gives the order of the motor based on the control algorithm to remaine the system is stable at different impediment. The robot is drive with Dc motor and the Arduino cannot drive. A motor driver (L298 type) is used to provide a sufficient current. The Ultrasonic sensor (used to sense impediment during the movement) and 3-axis gyroscope accelerometer sensor (To measure the robot inclination angle) to control the two-wheel robot. The controller laws allow reaching static or moving targets based on three structured IOT interactions between the elementary controllers and the sensor with actuator via Cloud environment. Regarding the technical detail must be designed based on the mathematical model. The mathematical model is used based on the model of some references, after that, the transfer function of the system is found. In this work, the MATLAB Simulink is used in the design of the controller, and the PID controller is used due to the simplicity and good activity in central systems. The PID tuner package Simulink is used to obtain the controller parameter (kp, ki, kd) that gives fast and good system response and stability. The result of the designed controller shows that the system has remained stable (remained vertically) and very fast (less than 1sec) until the system reaches the desired output

    Wheelchair lifter

    Get PDF
    Basically, a wheelchair stair lift is a motorized, meaning by carrying a person seated in a wheelchair up and down stairs. A wheelchair lift, also known as a platform lift, or vertical platform lift is a fully powered device designed to raise a wheelchair and its occupant in order to overcome a step or similar vertical barrier (Figure 8.1). Wheelchair lifts can be installed in homes or businesses and are often added to both private and public vehicles in order to meet accessibility requirements laid out by the Americans with Disabilities Act of 1990 (ADA). These mobility devices are often installed in homes as an alternative to a stair lift, which only transport a passenger and not his/her wheelchair or mobility scooter. It is installed over the stairs in such a way that the stairs can still be used in the usual fashion. There is no need of breaking down or reconstructing the existing building

    Electromechanical System Design for Self-Balancing Robot

    Full text link
    Self-balancing robot is based on the principle of Inverted pendulum, which is a two-wheel vehicle balances itself up in the vertical position with reference to the ground. It consists of both hardware and software implementation. Mechanical model based on the state space design of the cart, pendulum system. To find its stable inverted position, we used a generic feedback controller (i.e., PID controller). According to the situation we have to control both angel of pendulum and position of cart. Mechanical design consists of two dc gear motor with encoder, one Arduino microcontroller, IMU (inertial mass unit) sensor and motor driver as a basic need. IMU sensor which consists of accelerometer and gyroscope gives the reference acceleration and angle with respect to ground (vertical), When encoder which is attached with the motor gives the speed of the motor. These parameters are taken as the system parameter and determine the external force needed to balance the robot up. It will be prevented from falling by giving acceleration to the wheels according to its inclination from the vertical. If the bot tilts by an angle, then in the frame of the wheels; the center of mass of the bot will experience a pseudo force which will apply a torque opposite to the direction of tilt. We used a HC05 Bluetooth module to control the robot via our smartphone
    • 

    corecore