453 research outputs found

    Adaptive multi-channel MAC protocol for dense VANET with directional antennas

    No full text
    Directional antennas in Ad hoc networks offer more benefits than the traditional antennas with omni-directional mode. With directional antennas, it can increase the spatial reuse of the wireless channel. A higher gain of directional antennas makes terminals a further transmission range and fewer hops to the destination. This paper presents the design, implementation and simulation results of a multi-channel Medium Access Control (MAC) protocols for dense Vehicular Ad hoc Networks using directional antennas with local beam tables. Numeric results show that our protocol performs better than the existing multichannel protocols in vehicular environment

    QoS driven distributed multi-channel scheduling MAC protocol for multihop WSNs

    Get PDF
    Multi-Channel Dynamic Scheduling has been centric stage of research in WSNs in recent years. In this paper, we propose a Distributed Multi-Channel Scheduling MAC communication protocol (DMS-MAC) to improve the network performance of WSNs, which selects the best channel for an individual wireless sensor node. DMS-MAC supports dynamic channel assignment mechanism where each sensor node is equipped with a directional antennas. The proposed protocol helps to decrease the probability of collision, interferences and improves the overall network performance of Wireless Sensor Networks (WSNs). The protocol is most suitable for short packet transmission under low traffic networks and has ability to utilize parallel transmission among neighboring nodes and achieves increased energy efficiency when multi-channels are available. Simulation result shows that the proposed protocol improves the performance of aggregate throughput, probability of successful transmission, packet delivery ratio, energy consumption and average end-to-end delay

    A Multichannel Medium Access Control and its Performance Estimation for Multihop Wireless Sensor Networks

    Get PDF
    The thesis proposes a three-tier architecture wireless sensor network to monitor the environment of wide rural area. To enhance the network throughput, a multichannel MAC, 2HCR, is developed. The performance of 2HCR is examined for both single and bidirectional traffics. For the bidirectional traffic, a simple priority support scheme is proposed to give a priority for command traffic. Also, a procedure to estimate the throughput of multihop networks is developed to be used in network design

    Performance Analysis of CSMA and BTMA Protocols in Multihop Networks: Part II - Multiple Channel Case

    Get PDF
    Busy tone multiple access protocols have been used in multihop networks to reduce the effect of the hidden terminal problem. This paper demonstrates another approach to reduce the effect of the hidden terminal problem namely the use of multiple channel schemes. A protocol that uses both the busy tone and the multiple channel techniques achieves the best performance. Using a Markov chain model and an approximation, the throughput performance of the multiple channel nonpersistent CSMA protocol and the multiple channel conservative BTMA protocol in a large network is evaluated and compared. The results show that the multichannel CSMA and BTMA schemes exhibit a better performance over their single channel counterparts in a multihop network

    Performance Evaluation of AODV Routing Protocol in VANET with NS2

    Get PDF
    In intelligent transportation systems, the collaboration between vehicles and the road side units is essential to bring these systems to realization. The emerging Vehicular Ad Hoc Network (VANET) is becoming more and more important as it provides intelligent transportation application, comfort, safety, entertainment for people in vehicles. In order to provide stable routes and to get good performance in VANET, there is a need of proper routing protocols must be designed. In this paper, we are working with the very well-known ad-hoc on-demand distance vector (AODV) routing protocol. The existing Routing protocol AODV-L which is based on the Link expiration time is extended to propose a more reliable AODV-AD which is based on multichannel MAC protocol. For the performance evaluation of routing protocols, a simulation tool ‘NS2’ has been used. Simulation results show that the proposed AODV-AD protocol can achieves better performances in forms of high Route stability, Packet Delivery ratio and packet loss rate than traditional AODV-L and traditional AODV

    Analysis and experimental verification of frequency-based interference avoidance mechanisms in IEEE 802.15.4

    Get PDF
    More and more wireless networks are deployed with overlapping coverage. Especially in the unlicensed bands, we see an increasing density of heterogeneous solutions, with very diverse technologies and application requirements. As a consequence, interference from heterogeneous sources-also called cross-technology interference-is a major problem causing an increase of packet error rate (PER) and decrease of quality of service (QoS), possibly leading to application failure. This issue is apparent, for example, when an IEEE 802.15.4 wireless sensor network coexists with an IEEE 802.11 wireless LAN, which is the focus of this work. One way to alleviate cross-technology interference is to avoid it in the frequency domain by selecting different channels. Different multichannel protocols suitable for frequency-domain interference avoidance have already been proposed in the literature. However, most of these protocols have only been investigated from the perspective of intratechnology interference. Within this work, we create an objective comparison of different candidate channel selection mechanisms based on a new multichannel protocol taxonomy using measurements in a real-life testbed. We assess different metrics for the most suitable mechanism using the same set of measurements as in the comparison study. Finally, we verify the operation of the best channel selection metric in a proof-of-concept implementation running on the testbed

    Wireless Virtual Multiple Antenna Networks for Critical Process Control: Protocol Design and Experiments:

    Get PDF
    Wireless telemetry systems for remote monitoring and control of industrial processes are now becoming a relevant topic in the field of networked control. Wireless closed-loop control systems have stricter delay and link reliability requirements compared to conventional sensor networks for open-loop monitoring and call for the development of advanced network architectures. By following the guidelines introduced by recent standardization, this paper focuses on the most recent technological advances to enable wireless networked control for tight closed-loop applications with cycle times below 100 ms. The cooperative network paradigm is indicated as the key technology to enable cable replacing even in critical control applications. A cooperative communication system enables wireless devices placed at geographically separated locations to act as a virtual ensemble of antennas that creates a virtual multiple-antenna-distributed system. A proprietary link-layer protocol/based on the IEEE 802.15.4 physical layer has been developed and tested in an indoor environment characterized by non-line-of-sight (NLOS) propagation and dense obstacles. The measurements obtained from the testbed evaluate experimentally the benefits (and the limitations) of cable replacing in critical process control

    WING/WORLD: An Open Experimental Toolkit for the Design and Deployment of IEEE 802.11-Based Wireless Mesh Networks Testbeds

    Get PDF
    Wireless Mesh Networks represent an interesting instance of light-infrastructure wireless networks. Due to their flexibility and resiliency to network failures, wireless mesh networks are particularly suitable for incremental and rapid deployments of wireless access networks in both metropolitan and rural areas. This paper illustrates the design and development of an open toolkit aimed at supporting the design of different solutions for wireless mesh networking by enabling real evaluation, validation, and demonstration. The resulting testbed is based on off-the-shelf hardware components and open-source software and is focused on IEEE 802.11 commodity devices. The software toolkit is based on an "open" philosophy and aims at providing the scientific community with a tool for effective and reproducible performance analysis of WMNs. The paper describes the architecture of the toolkit, and its core functionalities, as well as its potential evolutions
    • 

    corecore