21 research outputs found

    Low-power high-efficiency video decoding using general purpose processors

    Get PDF
    In this article, we investigate how code optimization techniques and low-power states of general-purpose processors improve the power efficiency of HEVC decoding. The power and performance efficiency of the use of SIMD instructions, multicore architectures, and low-power active and idle states are analyzed in detail for offline video decoding. In addition, the power efficiency of techniques such as “race to idle” and “exploiting slack” with DVFS are evaluated for real-time video decoding. Results show that “exploiting slack” is more power efficient than “race to idle” for all evaluated platforms representing smartphone, tablet, laptop, and desktop computing systems

    Power-Aware HEVC Decoding with Tunable Image Quality

    Get PDF
    International audienceA high pressure is put on mobile devices to support increasingly advanced applications requiring more processing capabilities. Among those, the emerging High Efficiency Video Coding (HEVC) provides a better video quality for the same bit rate than the previous H.264 standard. A limitation in the usability of a mobile video playing device is the lack of support for guaranteeing stand-by time and up time for battery driven devices. The Green Metadata initiative within the MPEG standard was launched to address the power saving issues of the decoder and defines the technology requirements. In this paper, we propose a HEVC decoder with tunable decoding quality levels for maximum power savings as suggested in the scope of the Green Metadata initiative. Our experiments reveal that the modified HEVC video decoder can save up to 28 % of power consumption in real-world platforms while keeping better quality than decoding with H.264

    Dynamic Resource Management of Network-on-Chip Platforms for Multi-stream Video Processing

    Get PDF
    This thesis considers resource management in the context of parallel multiple video stream decoding, on multicore/many-core platforms. Such platforms have tens or hundreds of on-chip processing elements which are connected via a Network-on-Chip (NoC). Inefficient task allocation configurations can negatively affect the communication cost and resource contention in the platform, leading to predictability and performance issues. Efficient resource management for large-scale complex workloads is considered a challenging research problem; especially when applications such as video streaming and decoding have dynamic and unpredictable workload characteristics. For these type of applications, runtime heuristic-based task mapping techniques are required. As the application and platform size increase, decentralised resource management techniques are more desirable to overcome the reliability and performance bottlenecks in centralised management. In this work, several heuristic-based runtime resource management techniques, targeting real-time video decoding workloads are proposed. Firstly, two admission control approaches are proposed; one fully deterministic and highly predictable; the other is heuristic-based, which balances predictability and performance. Secondly, a pair of runtime task mapping schemes are presented, which make use of limited known application properties, communication cost and blocking-aware heuristics. Combined with the proposed deterministic admission controller, these techniques can provide strict timing guarantees for hard real-time streams whilst improving resource usage. The third contribution in this thesis is a distributed, bio-inspired, low-overhead, task re-allocation technique, which is used to further improve the timeliness and workload distribution of admitted soft real-time streams. Finally, this thesis explores parallelisation and resource management issues, surrounding soft real-time video streams that have been encoded using complex encoding tools and modern codecs such as High Efficiency Video Coding (HEVC). Properties of real streams and decoding trace data are analysed, to statistically model and generate synthetic HEVC video decoding workloads. These workloads are shown to have complex and varying task dependency structures and resource requirements. To address these challenges, two novel runtime task clustering and mapping techniques for Tile-parallel HEVC decoding are proposed. These strategies consider the workload communication to computation ratio and stream-specific characteristics to balance predictability improvement and communication energy reduction. Lastly, several task to memory controller port assignment schemes are explored to alleviate performance bottlenecks, resulting from memory traffic contention

    Gestión de recursos energéticamente eficiente para aplicaciones paralelas basadas en tareas en entornos multi-aplicación

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de InformĂĄtica, leĂ­da el 28/01/2021The end of Dennard scaling, as well as the arrival of the post-Moore era, has meant a big change in the way performance and energy efficiency are achieved by modern processors. From a constant increase of the clock frequency as the main method to increase performance at the beginning of the 2000s, the increase in the number of cores inside processors running at relatively conservative frequencies has stabilised as the current trend to increase both performance and energy efficiency. The increase of the heterogeneity in the systems, both inside the processors comprising different types of cores (e.g., big LITTLE architectures) or adding specific compute units (like multimedia extensions), as well as in the platform by the addition of other specific compute units (like GPUs), offering different performance and energy-efficiency trade-offs. Together with the increase in the number of cores, the processor evolution has been accompanied by the addition of different techologies that allow processors to adapt dynamically to the changes in the environment and running aplications. Among others, techiniques like dynamic voltage and frequiency scaling, power capping or cache partitioning are widely used nowadays to increase the performance and/or energy-efficiency...El fin del escalado de Dennard, asĂ­ como la llegada de la era post-Moore ha supuesto una gran revoluciĂłn en la forma de obtener el rendimiento y eficiencia energĂ©tica en los procesadores modernos. Desde un incremento constante en la frecuencia relativamente moderadas se ha impuesto como la tendencia actual para incrementar tanto el rendimiento como la eficiencia energĂ©tica. El aumento del nĂșmero de nĂșcleos dentro del procesado ha venido acompañado en los Ășltimos años por el aumento de la heterogeneidad en la plataforma, tanto dentro del procesador incorporando distintos tipos de nĂșcleos en el mismo procesador (e.g., la arquitectura big.LITTLE) como añadiendo unidades de cĂłmputo especĂ­ficas (e.g., extensiones multimedia), como la incorporaciĂłn de otros elementos de computo especĂ­ficos, ofreciendo diferentes grados de rendimiento y eficiencia energĂ©tica. La evoluciĂłn de los procesadores no solo ha venido dictada por el aumento del nĂșmero de nĂșcleos, sino que ha venido acompañada por la incorporaciĂłn de diferentes tĂ©cnicas permitiendo la adaptaciĂłn de las arquitecturas de forma dinĂĄmica al entorno asĂ­ como a las aplicaciones en ejecuciĂłn. Entre otras, tĂ©cnicas como el escalado de frecuencia, la limitaciĂłn de consumo o el particionado de la memoria cachĂ© son ampliamente utilizadas en la actualidad como mĂ©todos para incrementar el consumo y/o la eficiencia energĂ©tica...Fac. de InformĂĄticaTRUEunpu

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints

    Performance and Energy Consumption Characterization and Modeling of Video Decoding on Multi-core Heterogenous SoC and their Applications

    Get PDF
    To meet the increasing complexity of mobile multimedia applications, the System on Chip (SoC) equipping modern mobile devices integrate powerful heterogeneous processing elements among which General Purpose Processors (GPP), Digital Signal Processors (DSP), hardware accelerator are the most common ones.Due to the ever-growing gap between battery lifetime and hardware/software complexity in addition to application computing power needs, the energy saving issue becomes crucial in the design of such systems. In this context, we propose a study aiming to enhance the understanding of the energy consumption behavior of video decoding on these kinds of systems. Accordingly, an end-to-end methodology for characterizing and modeling the performance and the energy consumption of video decoding on GPP and DSP is proposed. The characterization step is based on an exhaustive experimental methodology for evaluating, at different abstraction levels, the performance and the energy consumption of video decoding. It was achieved on embedded platforms on which were executed a wide range of video decoding configurations. This step highlighted the importance to consider different parameters which may pertain to different abstraction levels in evaluating the overall energy efficiency of a given system. The measurements obtained in this step were used to build empirically performance and energy models for video decoding on both GPP and DSP. The proposed models gave very accurate estimation (R 2 = 97%) of both the performance and the energy consumption of video decoding in terms of a rich set of parameters including the video quality and the processor frequency. Moreover, based on a multi-level characterization and sub-model decomposition approaches, we show how the developed models, unlike classic empirical models, are easily and rapidly generalizable to other platforms.Some possible applications using the developed models, in the context of adaptive video decoding, were proposed. In general, it consists to use the capability of the proposed performance model to predict the decoding time of a given video quality in dimensioning/scheduling the processing resources. Due to the increasing demand on High Definition (HD), the characterization methodology was extended to consider HD video decoding on both parallel multi-cores and hardware video accelerator. This part highlighted the potential of parallelism video decoding to increase the energy efficiency of video decoding and point out some open issues in this domain.Pour rĂ©pondre Ă  la complexitĂ© croissante des applications multimĂ©dia mobiles, les systĂšmes sur puce Ă©quipant les appareils mobiles modernes intĂšgrent des unitĂ©s de calcul puissantes et hĂ©tĂ©rogĂšne. Parmi ces units de calcul, on peut trouver des processeurs Ă  usage gĂ©nĂ©ral, des processeur de traitement de signal et des accĂ©lĂ©rateurs matĂ©riels. En raison de l’écart toujours croissant entre la durĂ©e de vie des batteries et la demande de plus en plus importante en puissance de calcul, l’économie d’énergie devient un enjeu crucial dans la conception des systĂšmes mobiles. Cette problĂ©matique est accentuĂ©e par l’augmentation de la complexitĂ© des logiciels et architectures matĂ©riels utilisĂ©s. Dans ce contexte, nous proposons une Ă©tude visant Ă  amĂ©liorer la comprĂ©hension des considĂ©rations Ă©nergĂ©tiques du dĂ©codage vidĂ©o sur ce genre de systĂšmes. Nous proposerons ainsi une mĂ©thodologie pour la caractĂ©risation et la modĂ©lisation des performances et de la consommation d’énergie du dĂ©codage vidĂ©o, aussi bien sur des processeurs Ă  usage gĂ©nĂ©ral de type ARM que sur un processeurde traitement de signal. L’étape de caractĂ©risation est basĂ©e sur une mĂ©thodologie expĂ©rimentale pour Ă©valuer de façon exhaustive et Ă  diffĂ©rents niveaux d’abstraction, les performances et la consommation d’énergie du dĂ©codage vidĂ©o. Cette caractĂ©risation a Ă©tĂ© rĂ©alisĂ©e sur des plates-formes embarquĂ©es sur lesquels ont Ă©tĂ© exĂ©cutĂ©s un large Ă©ventail de configurations du dĂ©codage vidĂ©o. Cette Ă©tape a soulignĂ© l’importance d’examiner diffĂ©rents paramĂštres qui peuvent se rapporter Ă  diffĂ©rents niveaux d’abstraction dans l’évaluation de l’efficacitĂ© Ă©nergĂ©tique globale d’un systĂšme donnĂ©. Les mesures obtenues dans cette Ă©tape ont Ă©tĂ© utilisĂ©es pour construire empiriquement des modĂšles de performance et de consommation d’énergie pour le dĂ©codage vidĂ©o Ă  la fois sur des processeurs Ă  usage gĂ©nĂ©ral type ARM et sur un processeur de traitement de signal. Les modĂšles proposĂ©s peuvent estimer avec une grande prĂ©cision (R 2 = 97%) la performance et la consommation d’énergie de dĂ©codage vidĂ©o en fonction d’un nombre de paramĂštres comprenant la qualitĂ© de la vidĂ©o et la frĂ©quence du processeur. En plus, en se basant sur une caractĂ©risation multi-niveaux et une approches de modĂ©lisation par dĂ©composition en sous-modĂšles, nous montrons comment les modĂšles dĂ©veloppĂ©s, contrairement aux modĂšles empiriques classiques, sont facilement et rapidement gĂ©nĂ©ralisables Ă  d’autres plates-formes. Nous proposerons Ă©galement certaines applications possibles des modĂšles dĂ©veloppĂ©s, dans le cadre du dĂ©codage vidĂ©o adaptatif. En gĂ©nĂ©ral, cela consiste Ă  exploiter la capacitĂ© du modĂšle de performance proposĂ© pour prĂ©dire le temps de dĂ©codage d’une qualitĂ© vidĂ©o donnĂ©e afin de mieux dimensionner les ressources de calculs dans un but de rĂ©duire leur consommationd’énergie

    Gem5-X: A Gem5-Based System Level Simulation Framework to Optimize Many-Core Platforms

    Get PDF
    The rapid expansion of online-based services requires novel energy and performance efficient architectures to meet power and latency constraints. Fast architectural exploration has become a key enabler in the proposal of architectural innovation. In this paper, we present gem5-X, a gem5-based system level simulation framework, and a methodology to optimize many-core systems for performance and power. As real-life case studies of many-core server workloads, we use real-time video transcoding and image classification using convolutional neural networks (CNNs). Gem5-X allows us to identify bottlenecks and evaluate the potential benefits of architectural extensions such as in-cache computing and 3D stacked High Bandwidth Memory. For real-time video transcoding, we achieve 15% speed-up using in-order cores with in-cache computing when compared to a baseline in-order system and 76% energy savings when compared to an Out-of-Order system. When using HBM, we further accelerate real-time transcoding and CNNs by up to 7% and 8% respectively

    Algoritmo de estimação de movimento e sua arquitetura de hardware para HEVC

    Get PDF
    Doutoramento em Engenharia EletrotĂ©cnicaVideo coding has been used in applications like video surveillance, video conferencing, video streaming, video broadcasting and video storage. In a typical video coding standard, many algorithms are combined to compress a video. However, one of those algorithms, the motion estimation is the most complex task. Hence, it is necessary to implement this task in real time by using appropriate VLSI architectures. This thesis proposes a new fast motion estimation algorithm and its implementation in real time. The results show that the proposed algorithm and its motion estimation hardware architecture out performs the state of the art. The proposed architecture operates at a maximum operating frequency of 241.6 MHz and is able to process 1080p@60Hz with all possible variables block sizes specified in HEVC standard as well as with motion vector search range of up to ±64 pixels.A codificação de vĂ­deo tem sido usada em aplicaçÔes tais como, vĂ­deovigilĂąncia, vĂ­deo-conferĂȘncia, video streaming e armazenamento de vĂ­deo. Numa norma de codificação de vĂ­deo, diversos algoritmos sĂŁo combinados para comprimir o vĂ­deo. Contudo, um desses algoritmos, a estimação de movimento Ă© a tarefa mais complexa. Por isso, Ă© necessĂĄrio implementar esta tarefa em tempo real usando arquiteturas de hardware apropriadas. Esta tese propĂ”e um algoritmo de estimação de movimento rĂĄpido bem como a sua implementação em tempo real. Os resultados mostram que o algoritmo e a arquitetura de hardware propostos tĂȘm melhor desempenho que os existentes. A arquitetura proposta opera a uma frequĂȘncia mĂĄxima de 241.6 MHz e Ă© capaz de processar imagens de resolução 1080p@60Hz, com todos os tamanhos de blocos especificados na norma HEVC, bem como um domĂ­nio de pesquisa de vetores de movimento atĂ© ±64 pixels

    Dynamic task scheduling and binding for many-core systems through stream rewriting

    Get PDF
    This thesis proposes a novel model of computation, called stream rewriting, for the specification and implementation of highly concurrent applications. Basically, the active tasks of an application and their dependencies are encoded as a token stream, which is iteratively modified by a set of rewriting rules at runtime. In order to estimate the performance and scalability of stream rewriting, a large number of experiments have been evaluated on many-core systems and the task management has been implemented in software and hardware.In dieser Dissertation wurde Stream Rewriting als eine neue Methode entwickelt, um Anwendungen mit einer großen Anzahl von dynamischen Tasks zu beschreiben und effizient zur Laufzeit verwalten zu können. Dabei werden die aktiven Tasks in einem Datenstrom verpackt, der zur Laufzeit durch wiederholtes Suchen und Ersetzen umgeschrieben wird. Um die Performance und Skalierbarkeit zu bestimmen, wurde eine Vielzahl von Experimenten mit Many-Core-Systemen durchgefĂŒhrt und die Verwaltung von Tasks ĂŒber Stream Rewriting in Software und Hardware implementiert
    corecore