5,737 research outputs found

    Privacy Leakages in Approximate Adders

    Full text link
    Approximate computing has recently emerged as a promising method to meet the low power requirements of digital designs. The erroneous outputs produced in approximate computing can be partially a function of each chip's process variation. We show that, in such schemes, the erroneous outputs produced on each chip instance can reveal the identity of the chip that performed the computation, possibly jeopardizing user privacy. In this work, we perform simulation experiments on 32-bit Ripple Carry Adders, Carry Lookahead Adders, and Han-Carlson Adders running at over-scaled operating points. Our results show that identification is possible, we contrast the identifiability of each type of adder, and we quantify how success of identification varies with the extent of over-scaling and noise. Our results are the first to show that approximate digital computations may compromise privacy. Designers of future approximate computing systems should be aware of the possible privacy leakages and decide whether mitigation is warranted in their application.Comment: 2017 IEEE International Symposium on Circuits and Systems (ISCAS

    Architecture of Environmental Risk Modelling: for a faster and more robust response to natural disasters

    Full text link
    Demands on the disaster response capacity of the European Union are likely to increase, as the impacts of disasters continue to grow both in size and frequency. This has resulted in intensive research on issues concerning spatially-explicit information and modelling and their multiple sources of uncertainty. Geospatial support is one of the forms of assistance frequently required by emergency response centres along with hazard forecast and event management assessment. Robust modelling of natural hazards requires dynamic simulations under an array of multiple inputs from different sources. Uncertainty is associated with meteorological forecast and calibration of the model parameters. Software uncertainty also derives from the data transformation models (D-TM) needed for predicting hazard behaviour and its consequences. On the other hand, social contributions have recently been recognized as valuable in raw-data collection and mapping efforts traditionally dominated by professional organizations. Here an architecture overview is proposed for adaptive and robust modelling of natural hazards, following the Semantic Array Programming paradigm to also include the distributed array of social contributors called Citizen Sensor in a semantically-enhanced strategy for D-TM modelling. The modelling architecture proposes a multicriteria approach for assessing the array of potential impacts with qualitative rapid assessment methods based on a Partial Open Loop Feedback Control (POLFC) schema and complementing more traditional and accurate a-posteriori assessment. We discuss the computational aspect of environmental risk modelling using array-based parallel paradigms on High Performance Computing (HPC) platforms, in order for the implications of urgency to be introduced into the systems (Urgent-HPC).Comment: 12 pages, 1 figure, 1 text box, presented at the 3rd Conference of Computational Interdisciplinary Sciences (CCIS 2014), Asuncion, Paragua

    Evaluating critical bits in arithmetic operations due to timing violations

    Full text link
    Various error models are being used in simulation of voltage-scaled arithmetic units to examine application-level tolerance of timing violations. The selection of an error model needs further consideration, as differences in error models drastically affect the performance of the application. Specifically, floating point arithmetic units (FPUs) have architectural characteristics that characterize its behavior. We examine the architecture of FPUs and design a new error model, which we call Critical Bit. We run selected benchmark applications with Critical Bit and other widely used error injection models to demonstrate the differences

    Optimizing for confidence - Costs and opportunities at the frontier between abstraction and reality

    Full text link
    Is there a relationship between computing costs and the confidence people place in the behavior of computing systems? What are the tuning knobs one can use to optimize systems for human confidence instead of correctness in purely abstract models? This report explores these questions by reviewing the mechanisms by which people build confidence in the match between the physical world behavior of machines and their abstract intuition of this behavior according to models or programming language semantics. We highlight in particular that a bottom-up approach relies on arbitrary trust in the accuracy of I/O devices, and that there exists clear cost trade-offs in the use of I/O devices in computing systems. We also show various methods which alleviate the need to trust I/O devices arbitrarily and instead build confidence incrementally "from the outside" by considering systems as black box entities. We highlight cases where these approaches can reach a given confidence level at a lower cost than bottom-up approaches.Comment: 11 pages, 1 figur

    XBioSiP: A Methodology for Approximate Bio-Signal Processing at the Edge

    Full text link
    Bio-signals exhibit high redundancy, and the algorithms for their processing are inherently error resilient. This property can be leveraged to improve the energy-efficiency of IoT-Edge (wearables) through the emerging trend of approximate computing. This paper presents XBioSiP, a novel methodology for approximate bio-signal processing that employs two quality evaluation stages, during the pre-processing and bio-signal processing stages, to determine the approximation parameters. It thereby achieves high energy savings while satisfying the user-determined quality constraint. Our methodology achieves, up to 19x and 22x reduction in the energy consumption of a QRS peak detection algorithm for 0% and <1% loss in peak detection accuracy, respectively.Comment: Accepted for publication at the Design Automation Conference 2019 (DAC'19), Las Vegas, Nevada, US
    • …
    corecore