10,731 research outputs found

    A Design Science Research Approach to Smart and Collaborative Urban Supply Networks

    Get PDF
    Urban supply networks are facing increasing demands and challenges and thus constitute a relevant field for research and practical development. Supply chain management holds enormous potential and relevance for society and everyday life as the flow of goods and information are important economic functions. Being a heterogeneous field, the literature base of supply chain management research is difficult to manage and navigate. Disruptive digital technologies and the implementation of cross-network information analysis and sharing drive the need for new organisational and technological approaches. Practical issues are manifold and include mega trends such as digital transformation, urbanisation, and environmental awareness. A promising approach to solving these problems is the realisation of smart and collaborative supply networks. The growth of artificial intelligence applications in recent years has led to a wide range of applications in a variety of domains. However, the potential of artificial intelligence utilisation in supply chain management has not yet been fully exploited. Similarly, value creation increasingly takes place in networked value creation cycles that have become continuously more collaborative, complex, and dynamic as interactions in business processes involving information technologies have become more intense. Following a design science research approach this cumulative thesis comprises the development and discussion of four artefacts for the analysis and advancement of smart and collaborative urban supply networks. This thesis aims to highlight the potential of artificial intelligence-based supply networks, to advance data-driven inter-organisational collaboration, and to improve last mile supply network sustainability. Based on thorough machine learning and systematic literature reviews, reference and system dynamics modelling, simulation, and qualitative empirical research, the artefacts provide a valuable contribution to research and practice

    Redefining Community in the Age of the Internet: Will the Internet of Things (IoT) generate sustainable and equitable community development?

    Get PDF
    There is a problem so immense in our built world that it is often not fully realized. This problem is the disconnection between humanity and the physical world. In an era of limitless data and information at our fingertips, buildings, public spaces, and landscapes are divided from us due to their physical nature. Compared with the intense flow of information from our online world driven by the beating engine of the internet, our physical world is silent. This lack of connection not only has consequences for sustainability but also for how we perceive and communicate with our built environment in the modern age. A possible solution to bridge the gap between our physical and online worlds is a technology known as the Internet of Things (IoT). What is IoT? How does it work? Will IoT change the concept of the built environment for a participant within it, and in doing so enhance the dynamic link between humans and place? And what are the implications of IoT for privacy, security, and data for the public good? Lastly, we will identify the most pressing issues existing in the built environment by conducting and analyzing case studies from Pomona College and California State University, Northridge. By analyzing IoT in the context of case studies we can assess its viability and value as a tool for sustainability and equality in communities across the world

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    The Adirondack Chronology

    Get PDF
    The Adirondack Chronology is intended to be a useful resource for researchers and others interested in the Adirondacks and Adirondack history.https://digitalworks.union.edu/arlpublications/1000/thumbnail.jp

    The making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18)

    Get PDF
    The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models' weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∌20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning

    Full stack development toward a trapped ion logical qubit

    Get PDF
    Quantum error correction is a key step toward the construction of a large-scale quantum computer, by preventing small infidelities in quantum gates from accumulating over the course of an algorithm. Detecting and correcting errors is achieved by using multiple physical qubits to form a smaller number of robust logical qubits. The physical implementation of a logical qubit requires multiple qubits, on which high fidelity gates can be performed. The project aims to realize a logical qubit based on ions confined on a microfabricated surface trap. Each physical qubit will be a microwave dressed state qubit based on 171Yb+ ions. Gates are intended to be realized through RF and microwave radiation in combination with magnetic field gradients. The project vertically integrates software down to hardware compilation layers in order to deliver, in the near future, a fully functional small device demonstrator. This thesis presents novel results on multiple layers of a full stack quantum computer model. On the hardware level a robust quantum gate is studied and ion displacement over the X-junction geometry is demonstrated. The experimental organization is optimized through automation and compressed waveform data transmission. A new quantum assembly language purely dedicated to trapped ion quantum computers is introduced. The demonstrator is aimed at testing implementation of quantum error correction codes while preparing for larger scale iterations.Open Acces

    International Conference Shaping light for health and wellbeing in cities

    Get PDF
    The book collects contributions presented during the international conference “Shaping light for health and wellbeing in cities” organized in the framework of the H2020 ENLIGHTENme project. The conference has investigated the multifaceted consequences light has on life in cities, by adopting a multidisciplinary and integrated approach to explore the complexity of challenges urban lighting poses on health and wellbeing, urban realm and social life. Papers cover several disciplines such as clinical and biomedical sciences, ethics and Responsible Research & Innovation, urban planning and architecture, data accessibility and interoperability, as well as social sciences and economics, and provide multifaceted insights that inspire further explorations. Contributions represent a step towards the development of innovative policies for improving health and wellbeing in our cities, addressing indoor and outdoor lighting

    Industry 4.0: product digital twins for remanufacturing decision-making

    Get PDF
    Currently there is a desire to reduce natural resource consumption and expand circular business principles whilst Industry 4.0 (I4.0) is regarded as the evolutionary and potentially disruptive movement of technology, automation, digitalisation, and data manipulation into the industrial sector. The remanufacturing industry is recognised as being vital to the circular economy (CE) as it extends the in-use life of products, but its synergy with I4.0 has had little attention thus far. This thesis documents the first investigating into I4.0 in remanufacturing for a CE contributing a design and demonstration of a model that optimises remanufacturing planning using data from different instances in a product’s life cycle. The initial aim of this work was to identify the I4.0 technology that would enhance the stability in remanufacturing with a view to reducing resource consumption. As the project progressed it narrowed to focus on the development of a product digital twin (DT) model to support data-driven decision making for operations planning. The model’s architecture was derived using a bottom-up approach where requirements were extracted from the identified complications in production planning and control that differentiate remanufacturing from manufacturing. Simultaneously, the benefits of enabling visibility of an asset’s through-life health were obtained using a DT as the modus operandi. A product simulator and DT prototype was designed to use Internet of Things (IoT) components, a neural network for remaining life estimations and a search algorithm for operational planning optimisation. The DT was iteratively developed using case studies to validate and examine the real opportunities that exist in deploying a business model that harnesses, and commodifies, early life product data for end-of-life processing optimisation. Findings suggest that using intelligent programming networks and algorithms, a DT can enhance decision-making if it has visibility of the product and access to reliable remanufacturing process information, whilst existing IoT components provide rudimentary “smart” capabilities, but their integration is complex, and the durability of the systems over extended product life cycles needs to be further explored

    Managing global virtual teams in the London FinTech industry

    Get PDF
    Today, the number of organisations that are adopting virtual working arrangements has exploded, and the London FinTech industry is no exception. During recent years, FinTech companies have increasingly developed virtual teams as a means of connecting and engaging geographically dispersed workers, lowering costs, and enabling greater speed and adaptability. As the first study in the United Kingdom regarding global virtual team management in the FinTech industry, this DBA research seeks answers to the question, “What makes for the successful management of a global virtual team in the London FinTech industry?”. Straussian grounded-theory method was chosen as this qualitative approach lets participants have their own voice and offers some flexibility. It also allows the researcher to have preconceived ideas about the research undertaking. The research work makes the case for appreciating the voice of people with lived experiences. Ten London-based FinTech Managers with considerable experience running virtual teams agreed to take part in this study. These Managers had spent time working at large, household-name firms with significant global reach, and one had recently become founder and CEO of his own firm, taking on clients and hiring contract staff from around the world. At least eight of the other participants were senior ‘Heads’ of various technology teams and one was a Managing Director working at a ‘Big Four’ consultancy. They had all (and many still did) spent years running geographically distributed teams with members as far away as Pacific Asia and they were all keen to discuss that breadth of experience and the challenges they faced. Results from these in-depth interviews suggested that there are myriad reasons for a global virtual team, from providing 24 hour, follow-the-sun service to locating the most cost-effective resources with the highest skills. It also confirmed that there are unique challenges to virtual management and new techniques are required to help navigate virtual managers through them. Managing a global virtual team requires much more than the traditional management competencies. Based on discussion with the respondents, a set of practical recommendations for global virtual team management was developed and covered a wide range of issues related to recruitment and selection, team building, developing standard operating procedures, communication, motivation, performance management, and building trust
    • 

    corecore