7,275 research outputs found

    Planning and Real Time Control of a Minimally Invasive Robotic Surgery System

    Get PDF
    This paper introduces the planning and control software of a teleoperating robotic system for minimally invasive surgery. It addresses the problem of how to organize a complex system with 41 degrees of freedom including robot setup planning, force feedback control and nullspace handling with three robotic arms. The planning software is separated into sequentially executed planning and registration procedures. An optimal setup is first planned in virtual reality and then adapted to variations in the operating room. The real time control system is composed of hierarchical layers. The design is flexible and expandable without losing performance. Structure, functionality and implementation of planning and control are described. The robotic system provides the surgeon with an intuitive hand-eye-coordination and force feedback in teleoperation for both hands

    An Experimental Approach to a Rapid Propulsion and Aeronautics Concepts Testbed

    Get PDF
    Modern aircraft design tools have limitations for predicting complex propulsion-airframe interactions. The demand for new tools and methods addressing these limitations is high based on the many recent Distributed Electric Propulsion (DEP) Vertical Take-Off and Landing (VTOL) concepts being developed for Urban Air Mobility (UAM) markets. We propose that low cost electronics and additive manufacturing can support the conceptual design of advanced autonomy-enabled concepts, by facilitating rapid prototyping for experimentally driven design cycles. This approach has the potential to reduce complex aircraft concept development costs, minimize unique risks associated with the conceptual design, and shorten development schedule by enabling the determination of many "unknown unknowns" earlier in the design process and providing verification of the results from aircraft design tools. A modular testbed was designed and built to evaluate this rapid design-build-test approach and to support aeronautics and autonomy research targeting UAM applications utilizing a complex, transitioning-VTOL aircraft configuration. The testbed is a modular wind tunnel and flight model. The testbed airframe is approximately 80% printed, with labor required for assembly. This paper describes the design process, fabrication process, ground testing, and initial wind tunnel structural and thermal loading of a proof-of-concept aircraft, the Langley Aerodrome 8 (LA-8)

    A Mechatronic Approach to Control of 6 DOF Parallel Manipulator

    Get PDF
    This paper presents a practical implementation, using reconfigurable computing applied to robotic problems. Through the proposal a hierarchical architecture, distributing the several control actions in growing levels of complexity and using resources of reconfigurable computing is possible to take into account the easiness of future modifications, updates and improvements in the robotic applications. A practical example is presenting using reconfigurable computing, of Stewart- Gough platform control, where the developed software and hardware are structured in independent blocks, through open architecture implementation, allowing the easy expansion of the system, better adapting the platform to the tasks associated to it. This open architecture implementation allows an easy expansion of the system and a better adaptation of the platform to its related tasks.N/

    Non-personal Data Collection for Toy User Interfaces

    Get PDF
    Toy-user-interfaces (ToyUI) are computing devices or peripherals that leverage interactivity and connectivity with other devices to promote physical and social play. ToyUI products may collect both personal and non-personal data (NPD) on their users. We propose nine data patterns for NPD collection as part of ToyUI design based on the study of 297 ToyUI items from both the literature and industry. In addition, we introduce a printed circuit board (PCB) used for rapid prototyping that enabled NPD data collection concerning both objects and users by gathering non-personal identification, positioning system, and motion tracking. We demonstrate the effectiveness of our hardware architecture by embedding it into two design scenarios, namely, closed rules and open-ended rules solutions. The objectives here are to assist the ToyUI makers in creating more meaningful play experiences while ensuring the privacy of children’s and their parents’ data

    UAS Simulator for Modeling, Analysis and Control in Free Flight and Physical Interaction

    Full text link
    This paper presents the ARCAD simulator for the rapid development of Unmanned Aerial Systems (UAS), including underactuated and fully-actuated multirotors, fixed-wing aircraft, and Vertical Take-Off and Landing (VTOL) hybrid vehicles. The simulator is designed to accelerate these aircraft's modeling and control design. It provides various analyses of the design and operation, such as wrench-set computation, controller response, and flight optimization. In addition to simulating free flight, it can simulate the physical interaction of the aircraft with its environment. The simulator is written in MATLAB to allow rapid prototyping and is capable of generating graphical visualization of the aircraft and the environment in addition to generating the desired plots. It has been used to develop several real-world multirotor and VTOL applications. The source code is available at https://github.com/keipour/aircraft-simulator-matlab.Comment: In proceedings of the 2023 AIAA SciTech Forum, Session: Air and Space Vehicle Dynamics, Systems, and Environments II

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Engineering Method and Tool for the Complete Virtual Commissioning of Robotic Cells

    Get PDF
    Intelligent robotic manufacturing cells must adapt to ever-varying operating conditions, developing autonomously optimal manufacturing strategies to achieve the best quality and overall productivity. Intelligent and cognitive behaviors are realized by using distributed controllers, in which complex control logics must interact and process a wide variety of input/output signals. In particular, programmable logic controllers (PLCs) and robot controllers must be coordinated and integrated. Then, there is the need to simulate the robotic cells’ behavior for performance verification and optimization by evaluating the effects of both PLC and robot control codes. In this context, this work proposes a method, and its implementation into an integrated tool, to exploit the potential of ABB RobotStudio software as a virtual prototyping platform for robotic cells, in which real robots control codes are executed on a virtual controller and integrated with Beckhoff PLC environment. For this purpose, a PLC Smart Component was conceived as an extension of RobotStudio functionalities to exchange signals with a TwinCAT instance. The new module allows the virtual commissioning of a complete robotic cell to be performed, assessing the control logics effects on the overall productivity. The solution is demonstrated on a robotic assembly cell, showing its feasibility and effectiveness in optimizing the final performance
    corecore