84,717 research outputs found

    Methodology for the evaluation of resilience of ICT systems for smart distribution grids

    Get PDF
    Ensuring resilient operation and control of smart grids is fundamental for empowering their deployment, but challenging at the same time. Accordingly, this study proposes a novel methodology for evaluating resilience of Information and Communication Technology (ICT) systems for smart distribution grids. Analysing how the system behaves under changing operating conditions a power system perspective allows to understand how resilient the smart distribution grid is, but the resilience of the ICT system in charge of its operation affects the overall performance of the system and does, therefore, condition its resilience. With the aim of systematising the evaluation of ICT systems’ resilience, this study proposes to combine a standardized modelling of Smart Grids, the Smart Grid Architecture Model (SGAM), with a data structured diagram, the Entity Relationship Model (ERM). The architecture of smart distribution grids is analysed through SGAM. Then, their technical characteristics and functionalities are defined and represented in a ERM diagram. Finally, the attributes or properties of the system components are used to formulate resilience indicators against different types of disturbances. This methodology is then applied to analyse the resilience of a ICT platform being developed in EMPOWER H2020 project.Postprint (published version

    Intelligent energy management based on SCADA system in a real Microgrid for smart building applications

    Get PDF
    Energy management is one of the main challenges in Microgrids (MGs) applied to Smart Buildings (SBs). Hence, more studies are indispensable to consider both modeling and operating aspects to utilize the upcoming results of the system for the different applications. This paper presents a novel energy management architecture model based on complete Supervisory Control and Data Acquisition (SCADA) system duties in an educational building with an MG Laboratory (Lab) testbed, which is named LAMBDA at the Electrical and Energy Engineering Department of the Sapienza University of Rome. The LAMBDA MG Lab simulates in a small scale a SB and is connected with the DIAEE electrical network. LAMBDA MG is composed of a Photovoltaic generator (PV), a Battery Energy Storage System (BESS), a smart switchboard (SW), and different classified loads (critical, essential, and normal) some of which are manageable and controllable (lighting, air conditioning, smart plugs operating into the LAB). The aim of the LAMBDA implementation is making the DIAEE smart for energy saving purposes. In the LAMBDA Lab, the communication architecture consists in a complex of master/slave units and actuators carried out by two main international standards, Modbus (industrial serial standard for electrical and technical monitoring systems) and Konnex (an open standard for commercial and domestic building automation). Making the electrical department smart causes to reduce the required power from the main grid. Hence, to achieve the aims, results have been investigated in two modes. Initially, the real-time mode based on the SCADA system, which reveals real daily power consumption and production of different sources and loads. Next, the simulation part is assigned to shows the behavior of the main grid, loads and BESS charging and discharging based on energy management system. Finally, the proposed model has been examined in different scenarios and evaluated from the economic aspect

    Using security patterns for modelling security capabilities in a Grid OS

    Get PDF

    Developing High Performance Computing Resources for Teaching Cluster and Grid Computing courses

    Get PDF
    High-Performance Computing (HPC) and the ability to process large amounts of data are of paramount importance for UK business and economy as outlined by Rt Hon David Willetts MP at the HPC and Big Data conference in February 2014. However there is a shortage of skills and available training in HPC to prepare and expand the workforce for the HPC and Big Data research and development. Currently, HPC skills are acquired mainly by students and staff taking part in HPC-related research projects, MSc courses, and at the dedicated training centres such as Edinburgh University’s EPCC. There are few UK universities teaching the HPC, Clusters and Grid Computing courses at the undergraduate level. To address the issue of skills shortages in the HPC it is essential to provide teaching and training as part of both postgraduate and undergraduate courses. The design and development of such courses is challenging since the technologies and software in the fields of large scale distributed systems such as Cluster, Cloud and Grid computing are undergoing continuous change. The students completing the HPC courses should be proficient in these evolving technologies and equipped with practical and theoretical skills for future jobs in this fast developing area. In this paper we present our experience in developing the HPC, Cluster and Grid modules including a review of existing HPC courses offered at the UK universities. The topics covered in the modules are described, as well as the coursework projects based on practical laboratory work. We conclude with an evaluation based on our experience over the last ten years in developing and delivering the HPC modules on the undergraduate courses, with suggestions for future work

    Enhancing Job Scheduling of an Atmospheric Intensive Data Application

    Get PDF
    Nowadays, e-Science applications involve great deal of data to have more accurate analysis. One of its application domains is the Radio Occultation which manages satellite data. Grid Processing Management is a physical infrastructure geographically distributed based on Grid Computing, that is implemented for the overall processing Radio Occultation analysis. After a brief description of algorithms adopted to characterize atmospheric profiles, the paper presents an improvement of job scheduling in order to decrease processing time and optimize resource utilization. Extension of grid computing capacity is implemented by virtual machines in existing physical Grid in order to satisfy temporary job requests. Also scheduling plays an important role in the infrastructure that is handled by a couple of schedulers which are developed to manage data automaticall

    Electromechanical Dynamics of High Photovoltaic Power Grids

    Get PDF
    This dissertation study focuses on the impact of high PV penetration on power grid electromechanical dynamics. Several major aspects of power grid electromechanical dynamics are studied under high PV penetration, including frequency response and control, inter-area oscillations, transient rotor angle stability and electromechanical wave propagation.To obtain dynamic models that can reasonably represent future power systems, Chapter One studies the co-optimization of generation and transmission with large-scale wind and solar. The stochastic nature of renewables is considered in the formulation of mixed-integer programming model. Chapter Two presents the development procedures of high PV model and investigates the impact of high PV penetration on frequency responses. Chapter Three studies the impact of PV penetration on inter-area oscillations of the U.S. Eastern Interconnection system. Chapter Four presents the impacts of high PV on other electromechanical dynamic issues, including transient rotor angle stability and electromechanical wave propagation. Chapter Five investigates the frequency response enhancement by conventional resources. Chapter Six explores system frequency response improvement through real power control of wind and PV. For improving situation awareness and frequency control, Chapter Seven studies disturbance location determination based on electromechanical wave propagation. In addition, a new method is developed to generate the electromechanical wave propagation speed map, which is useful to detect system inertia distribution change. Chapter Eight provides a review on power grid data architectures for monitoring and controlling power grids. Challenges and essential elements of data architecture are analyzed to identify various requirements for operating high-renewable power grids and a conceptual data architecture is proposed. Conclusions of this dissertation study are given in Chapter Nine
    corecore