300 research outputs found

    Architecture for VLSI design of Reed-Solomon encoders

    Get PDF
    The logic structure of a universal VLSI chip called the symbol-slice Reed-Solomon (RS) encoder chip is discussed. An RS encoder can be constructed by cascading and properly interconnecting a group of such VLSI chips. As a design example, it is shown that a (255,223) RD encoder requiring around 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical interconnected VLSI RS encoder chips. Besides the size advantage, the VLSI RS encoder also has the potential advantages of requiring less power and having a higher reliability

    A VLSI single chip (255,223) Reed-Solomon encoder with interleaver

    Get PDF
    A single-chip implementation of a Reed-Solomon encoder with interleaving capability is described. The code used was adapted by the CCSDS (Consulative Committee on Space Data Systems). It forms the outer code of the NASA standard concatenated coding system which includes a convolutional inner code of rate 1/2 and constraint length 7. The architecture, leading to this single VLSI chip design, makes use of a bit-serial finite field multiplication algorithm due to E.R. Berlekamp

    Recent advances in coding theory for near error-free communications

    Get PDF
    Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression

    The VLSI design of a single chip Reed-Solomon encoder

    Get PDF
    A design for a single chip implementation of a Reed-Solomon encoder is presented. The architecture that leads to this single VLSI chip design makes use of a bit serial finite field multiplication algorithm

    A Low Complexity Algorithm and Architecture for Systematic Encoding of Hermitian Codes

    Full text link
    We present an algorithm for systematic encoding of Hermitian codes. For a Hermitian code defined over GF(q^2), the proposed algorithm achieves a run time complexity of O(q^2) and is suitable for VLSI implementation. The encoder architecture uses as main blocks q varying-rate Reed-Solomon encoders and achieves a space complexity of O(q^2) in terms of finite field multipliers and memory elements.Comment: 5 Pages, Accepted in IEEE International Symposium on Information Theory ISIT 200

    VLSI single-chip (255,223) Reed-Solomon encoder with interleaver

    Get PDF
    The invention relates to a concatenated Reed-Solomon/convolutional encoding system consisting of a Reed-Solomon outer code and a convolutional inner code for downlink telemetry in space missions, and more particularly to a Reed-Solomon encoder with programmable interleaving of the information symbols and code correction symbols to combat error bursts in the Viterbi decoder

    A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes

    Get PDF
    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation

    The Reed-Solomon encoders: Conventional versus Berlekamp's architecture

    Get PDF
    Concatenated coding was adopted for interplanetary space missions. Concatenated coding was employed with a convolutional inner code and a Reed-Solomon (RS) outer code for spacecraft telemetry. Conventional RS encoders are compared with those that incorporate two architectural features which approximately halve the number of multiplications of a set of fixed arguments by any RS codeword symbol. The fixed arguments and the RS symbols are taken from a nonbinary finite field. Each set of multiplications is bit-serially performed and completed during one (bit-serial) symbol shift. All firmware employed by conventional RS encoders is eliminated

    A simplified procedure for correcting both errors and erasures of a Reed-Solomon code using the Euclidean algorithm

    Get PDF
    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code
    • …
    corecore