24,724 research outputs found

    CERN Storage Systems for Large-Scale Wireless

    Get PDF
    The project aims at evaluating the use of CERN computing infrastructure for next generation sensor networks data analysis. The proposed system allows the simulation of a large-scale sensor array for traffic analysis, streaming data to CERN storage systems in an efficient way. The data are made available for offline and quasi-online analysis, enabling both long term planning and fast reaction on the environment

    Autonomic Cloud Computing: Open Challenges and Architectural Elements

    Full text link
    As Clouds are complex, large-scale, and heterogeneous distributed systems, management of their resources is a challenging task. They need automated and integrated intelligent strategies for provisioning of resources to offer services that are secure, reliable, and cost-efficient. Hence, effective management of services becomes fundamental in software platforms that constitute the fabric of computing Clouds. In this direction, this paper identifies open issues in autonomic resource provisioning and presents innovative management techniques for supporting SaaS applications hosted on Clouds. We present a conceptual architecture and early results evidencing the benefits of autonomic management of Clouds.Comment: 8 pages, 6 figures, conference keynote pape

    Model-driven engineering approach to design and implementation of robot control system

    Full text link
    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into the typical workflow of model-driven engineering development.Comment: Presented at DSLRob 2011 (arXiv:cs/1212.3308

    A framework for design engineering education in a global context

    Get PDF
    This paper presents a framework for teaching design engineering in a global context using innovative technologies to enable distributed teams to work together effectively across international and cultural boundaries. The DIDET Framework represents the findings of a 5-year project conducted by the University of Strathclyde, Stanford University and Olin College which enhanced student learning opportunities by enabling them to partake in global, team based design engineering projects, directly experiencing different cultural contexts and accessing a variety of digital information sources via a range of innovative technology. The use of innovative technology enabled the formalization of design knowledge within international student teams as did the methods that were developed for students to store, share and reuse information. Coaching methods were used by teaching staff to support distributed teams and evaluation work on relevant classes was carried out regularly to allow ongoing improvement of learning and teaching and show improvements in student learning. Major findings of the 5 year project include the requirement to overcome technological, pedagogical and cultural issues for successful eLearning implementations. The DIDET Framework encapsulates all the conclusions relating to design engineering in a global context. Each of the principles for effective distributed design learning is shown along with relevant findings and suggested metrics. The findings detailed in the paper were reached through a series of interventions in design engineering education at the collaborating institutions. Evaluation was carried out on an ongoing basis and fed back into project development, both on the pedagogical and the technological approaches
    • …
    corecore