49,278 research outputs found

    COMMUNICATION BETWEEN A MULTICHANNEL AUDIO ACQUISITION AND AN INFORMATION SYSTEM IN A HEALTH SMART HOME FOR DATA FUSION

    No full text
    International audienceThe Health Integrated Smart Home Information System (HISÂČ) has been developed in the TIMC laboratory for the remote monitoring of the health status of an elderly person during daily life at home. This aims at improving patients' life conditions and at reducing the costs of the long hospitalization. The design of this system is based on a CAN network linked to volumetric, physiological and environment sensors. In addition, a collaboration between the TIMC and the CLIPS laboratories permitted to replace the video camera, not well accepted by the patients by a system based on a multichannel Sound Acquisition. The coupling between both systems will enable to detect if the person is in a situation of distress or not. Both systems locally processe in real time the incoming data and communicate using a CAN network to display the health status. This article describes the system architecture of both systems, practical solutions for their communication and the evaluation results

    A modular IoT platform for real-time indoor air quality monitoring

    Get PDF
    The impact of air quality on health and on life comfort is well established. In many societies, vulnerable elderly and young populations spend most of their time indoors. Therefore, indoor air quality monitoring (IAQM) is of great importance to human health. Engineers and researchers are increasingly focusing their efforts on the design of real-time IAQM systems using wireless sensor networks. This paper presents an end-to-end IAQM system enabling measurement of CO2, CO, SO2, NO2, O3, Cl2, ambient temperature, and relative humidity. In IAQM systems, remote users usually use a local gateway to connect wireless sensor nodes in a given monitoring site to the external world for ubiquitous access of data. In this work, the role of the gateway in processing collected air quality data and its reliable dissemination to end-users through a web-server is emphasized. A mechanism for the backup and the restoration of the collected data in the case of Internet outage is presented. The system is adapted to an open-source Internet-of-Things (IoT) web-server platform, called Emoncms, for live monitoring and long-term storage of the collected IAQM data. A modular IAQM architecture is adopted, which results in a smart scalable system that allows seamless integration of various sensing technologies, wireless sensor networks (WSNs) and smart mobile standards. The paper gives full hardware and software details of the proposed solution. Sample IAQM results collected in various locations are also presented to demonstrate the abilities of the system. 2018 by the authors. Licensee MDPI, Basel, Switzerland.Acknowledgments: This publication was made possible by the National Priority Research Program (NPRP) award (NPRP6-600-2-250) from the Qatar National Research Fund (QNRF), a member of the Qatar Foundation. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of QNRF.Scopu

    New intelligent network approach for monitoring physiological parameters : the case of Benin

    Get PDF
    Benin health system is facing many challenges as: (i) affordable high-quality health care to a growing population providing need, (ii) patients’ hospitalization time reduction, (iii) and presence time of the nursing staff optimization. Such challenges can be solved by remote monitoring of patients. To achieve this, five steps were followed. 1) Identification of the Wireless Body Area Network (WBAN) systems’ characteristics and the patient physiological parameters’ monitoring. 2) The national Integrated Patient Monitoring Network (RIMP) architecture modeling in a cloud of Technocenters. 3) Cross-analysis between the characteristics and the functional requirements identified. 4) Each Technocenter’s functionality simulation through: a) the design approach choice inspired by the life cycle of V systems; b) functional modeling through SysML Language; c) the communication technology and different architectures of sensor networks choice studying. 5) An estimate of the material resources of the national RIMP according to physiological parameters. A National Integrated Network for Patient Monitoring (RNIMP) remotely, ambulatory or not, was designed for Beninese health system. The implementation of the RNIMP will contribute to improve patients’ care in Benin. The proposed network is supported by a repository that can be used for its implementation, monitoring and evaluation. It is a table of 36 characteristic elements each of which must satisfy 5 requirements relating to: medical application, design factors, safety, performance indicators and materiovigilance

    Towards a Smarter organization for a Self-servicing Society

    Full text link
    Traditional social organizations such as those for the management of healthcare are the result of designs that matched well with an operational context considerably different from the one we are experiencing today. The new context reveals all the fragility of our societies. In this paper, a platform is introduced by combining social-oriented communities and complex-event processing concepts: SELFSERV. Its aim is to complement the "old recipes" with smarter forms of social organization based on the self-service paradigm and by exploring culture-specific aspects and technological challenges.Comment: Final version of a paper published in the Proceedings of International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI'16), special track on Emergent Technologies for Ambient Assisted Living (ETAAL

    Designing community care systems with AUML

    Get PDF
    This paper describes an approach to developing an appropriate agent environment appropriate for use in community care applications. Key to its success is that software designers collaborate with environment builders to provide the levels of cooperation and support required within an integrated agent–oriented community system. Agent-oriented Unified Modeling Language (AUML) is a practical approach to the analysis, design, implementation and management of such an agent-based system, whilst providing the power and expressiveness necessary to support the specification, design and organization of a health care service. The background of an agent-based community care application to support the elderly is described. Our approach to building agent–oriented software development solutions emphasizes the importance of AUML as a fundamental initial step in producing more general agent–based architectures. This approach aims to present an effective methodology for an agent software development process using a service oriented approach, by addressing the agent decomposition, abstraction, and organization characteristics, whilst reducing its complexity by exploiting AUML’s productivity potential. </p
    • 

    corecore