22,914 research outputs found

    Social-aware Forwarding in Opportunistic Wireless Networks: Content Awareness or Obliviousness?

    Full text link
    With the current host-based Internet architecture, networking faces limitations in dynamic scenarios, due mostly to host mobility. The ICN paradigm mitigates such problems by releasing the need to have an end-to-end transport session established during the life time of the data transfer. Moreover, the ICN concept solves the mismatch between the Internet architecture and the way users would like to use it: currently a user needs to know the topological location of the hosts involved in the communication when he/she just wants to get the data, independently of its location. Most of the research efforts aim to come up with a stable ICN architecture in fixed networks, with few examples in ad-hoc and vehicular networks. However, the Internet is becoming more pervasive with powerful personal mobile devices that allow users to form dynamic networks in which content may be exchanged at all times and with low cost. Such pervasive wireless networks suffer with different levels of disruption given user mobility, physical obstacles, lack of cooperation, intermittent connectivity, among others. This paper discusses the combination of content knowledge (e.g., type and interested parties) and social awareness within opportunistic networking as to drive the deployment of ICN solutions in disruptive networking scenarios. With this goal in mind, we go over few examples of social-aware content-based opportunistic networking proposals that consider social awareness to allow content dissemination independently of the level of network disruption. To show how much content knowledge can improve social-based solutions, we illustrate by means of simulation some content-oblivious/oriented proposals in scenarios based on synthetic mobility patterns and real human traces.Comment: 7 pages, 6 figure

    Modeling Data-Plane Power Consumption of Future Internet Architectures

    Full text link
    With current efforts to design Future Internet Architectures (FIAs), the evaluation and comparison of different proposals is an interesting research challenge. Previously, metrics such as bandwidth or latency have commonly been used to compare FIAs to IP networks. We suggest the use of power consumption as a metric to compare FIAs. While low power consumption is an important goal in its own right (as lower energy use translates to smaller environmental impact as well as lower operating costs), power consumption can also serve as a proxy for other metrics such as bandwidth and processor load. Lacking power consumption statistics about either commodity FIA routers or widely deployed FIA testbeds, we propose models for power consumption of FIA routers. Based on our models, we simulate scenarios for measuring power consumption of content delivery in different FIAs. Specifically, we address two questions: 1) which of the proposed FIA candidates achieves the lowest energy footprint; and 2) which set of design choices yields a power-efficient network architecture? Although the lack of real-world data makes numerous assumptions necessary for our analysis, we explore the uncertainty of our calculations through sensitivity analysis of input parameters

    Poor Man's Content Centric Networking (with TCP)

    Get PDF
    A number of different architectures have been proposed in support of data-oriented or information-centric networking. Besides a similar visions, they share the need for designing a new networking architecture. We present an incrementally deployable approach to content-centric networking based upon TCP. Content-aware senders cooperate with probabilistically operating routers for scalable content delivery (to unmodified clients), effectively supporting opportunistic caching for time-shifted access as well as de-facto synchronous multicast delivery. Our approach is application protocol-independent and provides support beyond HTTP caching or managed CDNs. We present our protocol design along with a Linux-based implementation and some initial feasibility checks

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF
    We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS) and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case

    Integrating personal media and digital TV with QoS guarantees using virtualized set-top boxes: architecture and performance measurements

    Get PDF
    Nowadays, users consume a lot of functionality in their home coming from a service provider located in the Internet. While the home network is typically shielded off as much as possible from the `outside world', the supplied services could be greatly extended if it was possible to use local information. In this article, an extended service is presented that integrates the user's multimedia content, scattered over multiple devices in the home network, into the Electronic Program Guide (EPG) of the Digital TV. We propose to virtualize the set-top box, by migrating all functionality except user interfacing to the service provider infrastructure. The media in the home network is discovered through standard Universal Plug and Play (UPnP), of which the QoS functionality is exploited to ensure high quality playback over the home network, that basically is out of the control of the service provider. The performance of the subsystems are analysed

    Impact of Mobile and Wireless Technology on Healthcare Delivery services

    Get PDF
    Modern healthcare delivery services embrace the use of leading edge technologies and new scientific discoveries to enable better cures for diseases and better means to enable early detection of most life-threatening diseases. The healthcare industry is finding itself in a state of turbulence and flux. The major innovations lie with the use of information technologies and particularly, the adoption of mobile and wireless applications in healthcare delivery [1]. Wireless devices are becoming increasingly popular across the healthcare field, enabling caregivers to review patient records and test results, enter diagnosis information during patient visits and consult drug formularies, all without the need for a wired network connection [2]. A pioneering medical-grade, wireless infrastructure supports complete mobility throughout the full continuum of healthcare delivery. It facilitates the accurate collection and the immediate dissemination of patient information to physicians and other healthcare care professionals at the time of clinical decision-making, thereby ensuring timely, safe, and effective patient care. This paper investigates the wireless technologies that can be used for medical applications, and the effectiveness of such wireless solutions in a healthcare environment. It discusses challenges encountered; and concludes by providing recommendations on policies and standards for the use of such technologies within hospitals

    Technical considerations towards mobile user QoE enhancement via Cloud interaction

    Get PDF
    This paper discusses technical considerations of a Cloud infrastructure which interacts with mobile devices in order to migrate part of the computational overhead from the mobile device to the Cloud. The aim of the interaction between the mobile device and the Cloud is the enhancement of parameters that affect the Quality of Experience (QoE) of the mobile end user through the offloading of computational aspects of demanding applications. This paper shows that mobile user’s QoE can be potentially enhanced by offloading computational tasks to the Cloud which incorporates a predictive context-aware mechanism to schedule delivery of content to the mobile end-user using a low-cost interaction model between the Cloud and the mobile user. With respect to the proposed enhancements, both the technical considerations of the cloud infrastructure are examined, as well as the interaction between the mobile device and the Cloud
    corecore