18 research outputs found

    Metacomputing on clusters augmented with reconfigurable hardware

    Get PDF

    A Preemption-Based Meta-Scheduling System for Distributed Computing

    Get PDF
    This research aims at designing and building a scheduling framework for distributed computing systems with the primary objectives of providing fast response times to the users, delivering high system throughput and accommodating maximum number of applications into the systems. The author claims that the above mentioned objectives are the most important objectives for scheduling in recent distributed computing systems, especially Grid computing environments. In order to achieve the objectives of the scheduling framework, the scheduler employs arbitration of application-level schedules and preemption of executing jobs under certain conditions. In application-level scheduling, the user develops a schedule for his application using an execution model that simulates the execution behavior of the application. Since application-level scheduling can seriously impede the performance of the system, the scheduling framework developed in this research arbitrates between different application-level schedules corresponding to different applications to provide fair system usage for all applications and balance the interests of different applications. In this sense, the scheduling framework is not a classical scheduling system, but a meta-scheduling system that interacts with the application-level schedulers. Due to the large system dynamics involved in Grid computing systems, the ability to preempt executing jobs becomes a necessity. The meta-scheduler described in this dissertation employs well defined scheduling policies to preempt and migrate executing applications. In order to provide the users with the capability to make their applications preemptible, a user-level check-pointing library called SRS (Stop-Restart Software) was also developed by this research. The SRS library is different from many user-level check-pointing libraries since it allows reconfiguration of applications between migrations. This reconfiguration can be achieved by changing the processor configuration and/or data distribution. The experimental results provided in this dissertation demonstrates the utility of the metascheduling framework for distributed computing systems. And lastly, the metascheduling framework was put to practical use by building a Grid computing system called GradSolve. GradSolve is a flexible system and it allows the application library writers to upload applications with different capabilities into the system. GradSolve is also unique with respect to maintaining traces of the execution of the applications and using the traces for subsequent executions of the application

    Virtualising visualisation: A distributed service based approach to visualisation on the Grid

    Get PDF
    Context: Current visualisation systems are not designed to work with the large quantities of data produced by scientists today, they rely on the abilities of a single resource to perform all of the processing and visualisation of data which limits the problem size that they can investigate. Objectives: The objectives of this research are to address the issues encountered by scientists with current visualisation systems and the deficiencies highlighted in current visualisation systems. The research then addresses the question:” How do you design the ideal service oriented architecture for visualisation that meets the needs of scientists?” Method: A new design for a visualisation system based upon a Service Oriented Architecture is proposed to address the issues identified, the architecture is implemented using Java and web service technology. The implementation of the architecture also realised several case study scenarios as demonstrators. Evaluation: Evaluation was performed using case study scenarios of scientific problems and performance data was conducted through experimentation. The scenarios were assessed against the requirements for the architecture and the performance data against a base case simulating a single resource implementation. Conclusion: The virtualised visualisation architecture shows promise for applications where visualisation can be performed in a highly parallel manner and where the problem can be easily sub-divided into chunks for distributed processing

    UBIDEV: a homogeneous service framework for pervasive computing environments

    Get PDF
    This dissertation studies the heterogeneity problem of pervasive computing system from the viewpoint of an infrastructure aiming to provide a service-oriented application model. From Distributed System passing through mobile computing, pervasive computing is presented as a step forward in ubiquitous availability of services and proliferation of interacting autonomous entities. To better understand the problems related to the heterogeneous and dynamic nature of pervasive computing environments, we need to analyze the structure of a pervasive computing system from its physical and service dimension. The physical dimension describes the physical environment together wit the technology infrastructure that characterizes the interactions and the relations within the environment; the service dimension represents the services (being them software or not) the environment is able to provide [Nor99]. To better separate the constrains and the functionalities of a pervasive computing system, this dissertation classifies it in terms of resources, context, classification, services, coordination and application. UBIDEV, as the key result of this dissertation, introduces a unified model helping the design and the implementation of applications for heterogeneous and dynamic environments. This model is composed of the following concepts: • Resource: all elements of the environment that are manipulated by the application, they are the atomic abstraction unit of the model. • Context: all information coming from the environment that is used by the application to adapts its behavior. Context contains resources and services and defines their role in the application. • Classification: the environment is classified according to the application ontology in order to ground the generic conceptual model of the application to the specific environment. It defines the basic semantic level of interoperability. • Service: the functionalities supported by the system; each service manipulates one or more resources. Applications are defined as a coordination and adaptation of services. • Coordination: all aspects related to service composition and execution as well as the use of the contextual information are captured by the coordination concept. • Application Ontology: represents the viewpoint of the application on the specific context; it defines the high level semantic of resources, services and context. Applying the design paradigm proposed by UBIDEV, allows to describe applications according to a Service Oriented Architecture[Bie02], and to focus on application functionalities rather than their relations with the physical devices. Keywords: pervasive computing, homogenous environment, service-oriented, heterogeneity problem, coordination model, context model, resource management, service management, application interfaces, ontology, semantic services, interaction logic, description logic.Questa dissertazione studia il problema della eterogeneit`a nei sistemi pervasivi proponendo una infrastruttura basata su un modello orientato ai servizi. I sistemi pervasivi sono presentati come un’evoluzione naturale dei sistemi distribuiti, passando attraverso mobile computing, grazie ad una disponibilit`a ubiqua di servizi (sempre, ovunque ed in qualunque modo) e ad loro e con l’ambiente stesso. Al fine di meglio comprendere i problemi legati allintrinseca eterogeneit`a dei sistemi pervasivi, dobbiamo prima descrivere la struttura fondamentale di questi sistemi classificandoli attraverso la loro dimensione fisica e quella dei loro servizi. La dimensione fisica descrive l’ambiente fisico e tutti i dispositivi che fanno parte del contesto della applicazione. La dimensione dei servizi descrive le funzionalit`a (siano esse software o no) che l’ambiente `e in grado di fornire [Nor99]. I sistemi pervasivi vengono cos`ı classificati attraverso una metrica pi `u formale del tipo risorse, contesto, servizi, coordinazione ed applicazione. UBIDEV, come risultato di questa dissertazione, introduce un modello uniforme per la descrizione e lo sviluppo di applicazioni in ambienti dinamici ed eterogenei. Il modello `e composto dai seguenti concetti di base: • Risorse: gli elementi dell’ambiente fisico che fanno parte del modello dellapplicazione. Questi rappresentano l’unit`a di astrazione atomica di tutto il modello UBIDEV. • Contesto: le informazioni sullo stato dell’ambiente che il sistema utilizza per adattare il comportamento dell’applicazione. Il contesto include informazioni legate alle risorse, ai servizi ed alle relazioni che li legano. • Classificazione: l’ambiente viene classificato sulla base di una ontologia che rappresenta il punto di accordo a cui tutti i moduli di sistema fanno riferimento. Questa classificazione rappresenta il modello concettuale dell’applicazione che si riflette sull’intero ambiente. Si definisce cos`ı la semantica di base per tutto il sistema. • Servizi: le funzionalit`a che il sistema `e in grado di fornire; ogni servizio `e descritto in termini di trasformazione di una o pi `u risorse. Le applicazioni sono cos`ı definite in termini di cooperazione tra servizi autonomi. • Coordinazione: tutti gli aspetti legati alla composizione ed alla esecuzione di servizi cos`ı come l’elaborazione dell’informazione contestuale. • Ontologia dell’Applicazione: rappresenta il punto di vista dell’applicazione; definisce la semantica delle risorse, dei servizi e dell’informazione contestuale. Applicando il paradigma proposto da UBIDEV, si possono descrivere applicazioni in accordo con un modello Service-oriented [Bie02] ed, al tempo stesso, ridurre l’applicazione stessa alle sue funzionalit`a di alto livello senza intervenire troppo su come queste funzionalit` a devono essere realizzate dalle singole componenti fisiche

    Report on the Digital Technology Summit.

    Get PDF
    A conference sponsored by the University of Minnesota,, Minnesota High Technology Council, and Minnesota Office of Technology, held October 22 and 23, 1997 at Minneapolis, Minnesota

    Component performance modeling and scheduling strategies on grids

    Get PDF
    Doppelpromotion: Institut für Roboterforschung Dortmund und der Universität Pis
    corecore