80,409 research outputs found

    Neural Architecture Search by Estimation of Network Structure Distributions

    Get PDF
    The influence of deep learning is continuously expanding across different domains, and its new applications are ubiquitous. The question of neural network design thus increases in importance, as traditional empirical approaches are reaching their limits. Manual design of network architectures from scratch relies heavily on trial and error, while using existing pretrained models can introduce redundancies or vulnerabilities. Automated neural architecture design is able to overcome these problems, but the most successful algorithms operate on significantly constrained design spaces, assuming the target network to consist of identical repeating blocks. While such approach allows for faster search, it does so at the cost of expressivity. We instead propose an alternative probabilistic representation of a whole neural network structure under the assumption of independence between layer types. Our matrix of probabilities is equivalent to the population of models, but allows for discovery of structural irregularities, while being simple to interpret and analyze. We construct an architecture search algorithm, inspired by the estimation of distribution algorithms, to take advantage of this representation. The probability matrix is tuned towards generating high-performance models by repeatedly sampling the architectures and evaluating the corresponding networks, while gradually increasing the model depth. Our algorithm is shown to discover non-regular models which cannot be expressed via blocks, but are competitive both in accuracy and computational cost, while not utilizing complex dataflows or advanced training techniques, as well as remaining conceptually simple and highly extensible.Comment: 16 pages, 4 figures, 3 table

    Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation

    Full text link
    This paper proposes a new hybrid architecture that consists of a deep Convolutional Network and a Markov Random Field. We show how this architecture is successfully applied to the challenging problem of articulated human pose estimation in monocular images. The architecture can exploit structural domain constraints such as geometric relationships between body joint locations. We show that joint training of these two model paradigms improves performance and allows us to significantly outperform existing state-of-the-art techniques

    DeMoN: Depth and Motion Network for Learning Monocular Stereo

    Full text link
    In this paper we formulate structure from motion as a learning problem. We train a convolutional network end-to-end to compute depth and camera motion from successive, unconstrained image pairs. The architecture is composed of multiple stacked encoder-decoder networks, the core part being an iterative network that is able to improve its own predictions. The network estimates not only depth and motion, but additionally surface normals, optical flow between the images and confidence of the matching. A crucial component of the approach is a training loss based on spatial relative differences. Compared to traditional two-frame structure from motion methods, results are more accurate and more robust. In contrast to the popular depth-from-single-image networks, DeMoN learns the concept of matching and, thus, better generalizes to structures not seen during training.Comment: Camera ready version for CVPR 2017. Supplementary material included. Project page: http://lmb.informatik.uni-freiburg.de/people/ummenhof/depthmotionnet

    HyperVAE: A Minimum Description Length Variational Hyper-Encoding Network

    Full text link
    We propose a framework called HyperVAE for encoding distributions of distributions. When a target distribution is modeled by a VAE, its neural network parameters \theta is drawn from a distribution p(\theta) which is modeled by a hyper-level VAE. We propose a variational inference using Gaussian mixture models to implicitly encode the parameters \theta into a low dimensional Gaussian distribution. Given a target distribution, we predict the posterior distribution of the latent code, then use a matrix-network decoder to generate a posterior distribution q(\theta). HyperVAE can encode the parameters \theta in full in contrast to common hyper-networks practices, which generate only the scale and bias vectors as target-network parameters. Thus HyperVAE preserves much more information about the model for each task in the latent space. We discuss HyperVAE using the minimum description length (MDL) principle and show that it helps HyperVAE to generalize. We evaluate HyperVAE in density estimation tasks, outlier detection and discovery of novel design classes, demonstrating its efficacy

    Scalable Population Synthesis with Deep Generative Modeling

    Full text link
    Population synthesis is concerned with the generation of synthetic yet realistic representations of populations. It is a fundamental problem in the modeling of transport where the synthetic populations of micro-agents represent a key input to most agent-based models. In this paper, a new methodological framework for how to 'grow' pools of micro-agents is presented. The model framework adopts a deep generative modeling approach from machine learning based on a Variational Autoencoder (VAE). Compared to the previous population synthesis approaches, including Iterative Proportional Fitting (IPF), Gibbs sampling and traditional generative models such as Bayesian Networks or Hidden Markov Models, the proposed method allows fitting the full joint distribution for high dimensions. The proposed methodology is compared with a conventional Gibbs sampler and a Bayesian Network by using a large-scale Danish trip diary. It is shown that, while these two methods outperform the VAE in the low-dimensional case, they both suffer from scalability issues when the number of modeled attributes increases. It is also shown that the Gibbs sampler essentially replicates the agents from the original sample when the required conditional distributions are estimated as frequency tables. In contrast, the VAE allows addressing the problem of sampling zeros by generating agents that are virtually different from those in the original data but have similar statistical properties. The presented approach can support agent-based modeling at all levels by enabling richer synthetic populations with smaller zones and more detailed individual characteristics.Comment: 27 pages, 15 figures, 4 table
    • …
    corecore