279,084 research outputs found

    Medical Data Architecture Platform and Recommended Requirements for a Medical Data System for Exploration Missions

    Get PDF
    The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically- relevant information to support medical operations during exploration missions. This gap identifies that the current in-flight medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are a variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable a more medically autonomous crew than the current paradigm of medical data management on the International Space Station. ExMC has recognized that in order to make informed decisions about a medical data architecture framework, current methods for medical data management must not only be understood, but an architecture must also be identified that provides the crew with actionable insight to medical conditions. This medical data architecture will provide the necessary functionality to address the challenges of executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. Hence, the products derived from the third MDA prototype development will directly inform exploration medical system requirements for Level of Care IV in Gateway missions. In fiscal year 2019, the MDA project developed Test Bed 3, the third iteration in a series of prototypes, that featured integrations with cognition tool data, ultrasound image analytics and core Flight Software (cFS). Maintaining a layered architecture design, the framework implemented a plug-in, modular approach in the integration of these external data sources. An early version of MDA Test Bed 3 software was deployed and operated in a simulated analog environment that was part of the Next Space Technologies for Exploration Partnerships (NextSTEP) Gateway tests of multiple habitat prototypes. In addition, the MDA team participated in the Gateway Test and Verification Demonstration, where the MDA cFS applications was integrated with Gateway-in-a-Box software to send and receive medically relevant data over a simulated vehicle network. This software demonstration was given to ExMC and Gateway Program stakeholders at the NASA Johnson Space Center Integrated Power, Avionics and Software (iPAS) facility. Also, the integrated prototypes served as a vehicle to provide Level 5 requirements for the Crew Health and Performance Habitat Data System for Gateway Missions (Medical Level of Care IV). In the upcoming fiscal year, the MDA project will continue to provide systems engineering and vertical prototypes to refine requirements for medical Level of Care IV and inform requirements for Level of Care V

    Improved metrics collection and correlation for the CERN cloud storage test framework

    Get PDF
    Storage space is one of the most important ingredients that the European Organization for Nuclear Research (CERN) needs for its experiments and operation. Part of the Data & Storage Services (IT-DSS) group’s work at CERN is focused on testing and evaluating the cloud storage system that is provided by the openlab partner Huawei, Huawei Universal Disk Storage System (UDS). As a whole, the system consists of both software and hardware. The objective of the Huawei-CERN partnership is to investigate the performance of the cloud storage system. Among the interesting questions are the system’s scalability, reliability and ability to store and retrieve files. During the tests, possible bugs and malfunctions can be discovered and corrected. Different versions of the storage software that runs inside the storage system can also be compared to each other. The nature of testing and benchmarking a storage system gives rise to several small tasks that can be done during a short summer internship. In order to test the storage system a test framework developed by the DSS group is used. The framework consists of various types of file transfer tests, client and server monitoring programs and log file analysis programs. Part of the work done was additions to the existing framework and part was developing new tools. Metrics collection was the central theme. Metrics are to be understood as system statistics, such as memory consumption or processor usage. Memory usage and disk reads/writes were added to the existing client real-time monitoring framework. CPU and memory usage, network traffic (bytes received/sent) and the number of processes running are collected from a client computer before and after a daily test. Two other additions are visualization for storage system log files, as well as a new monitoring tool for the storage system. This report is divided into parts describing each part of the framework that was improved or added, the problem and the final solution. A short description of the code and the architecture are also included

    Software Architecture for Academic Audit Information Management System

    Get PDF
    The main purpose of this research is to give an understanding of how important is software architecture in a system development process. Software architecture is the second phase in system development life cycle which gave a huge contribution of the system fundamentals that determines the system's remaining development. its deployment and maintenance life. The relationship among requirements, processes, users and results are a never ending relationship where they complete each other and work as a unit. It is much like a framework of ideas, concepts and requirements that are designed before developing and carrying out the actual actions. A comprehensive software architecture which meets the quality standards can be used and referred to for other system's development which also shares the same fundamental concepts. Organization management and governing processes such as auditing management requires a comprehensive and efficient architecture to ensure the auditing processes are done accurately based on the standards set up by the quality control organization. Malaysian Qualifications Agency (MQA) is one of the organizations which monitors and coordinate both the quality assurance and accreditation of national higher learning institute. MQA auditing processes are carried out based on the international quality assurance processes and standards. To ensure the accuracy of auditing processes, the Architecture Tradeoff Analysis Method (ATAM) has been chose as an assessment tool to test the correctness of the architecture

    System Virtualization Tools for Software Development

    Get PDF
    The configuration complexity of preproduction sites coupled with access-control mechanisms often impede the software development life cycle. Virtualization is a cost-effective way to remove such barriers and provide a test environment similar to the production site, reducing the burden in IT administrators. An Eclipse-based virtualization tool framework can offer developers a personal runtime environment for launching and testing their applications. The authors have followed a model-driven architecture (MDA) approach that integrates best-of-breed virtualization technologies, such as Xen and VDE.ITECBAN is an IT innovation project partially funded by CENIT (a Spanish public R&D program). We're grateful to MITYC (Ministerio de Industria, Turismo y Comercio) and CDTI (Centro para el Desarrollo Tecnológico e Industrial) for supporting ITECBAN through CENIT

    Development of a client interface for a methodology independent object-oriented CASE tool : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The overall aim of the research presented in this thesis is the development of a prototype CASE Tool user interface that supports the use of arbitrary methodology notations for the construction of small-scale diagrams. This research is part of the larger CASE Tool project, MOOT (Massey's Object Oriented Tool). MOOT is a meta-system with a client-server architecture that provides a framework within which the semantics and syntax of methodologies can be described. The CASE Tool user interface is implemented in Java so it is as portable as possible and has a consistent look and feel. It has been designed as a client to the rest of the MOOT system (which acts as a server). A communications protocol has been designed to support the interaction between the CASE Tool client and a MOOT server. The user interface design of MOOT must support all possible graphical notations. No assumptions about the types of notations that a software engineer may use can be made. MOOT therefore provides a specification language called NDL for the definition of a methodology's syntax. Hence, the MOOT CASE Tool client described in this thesis is a shell that is parameterised by NDL specifications. The flexibility provided by such a high level of abstraction presents significant challenges in terms of designing effective human-computer interaction mechanisms for the MOOT user interface. Functional and non-functional requirements of the client user interface have been identified and applied during the construction of the prototype. A notation specification that defines the syntax for Coad and Yourdon OOA/OOD has been written in NDL and used as a test case. The thesis includes the iterative evaluation and extension of NDL resulting from the prototype development. The prototype has shown that the current approach to NDL is efficacious, and that the syntax and semantics of a methodology description can successfully be separated. The developed prototype has shown that it is possible to build a simple, non-intrusive, and efficient, yet flexible, useable, and helpful interface for meta-CASE tools. The development of the CASE Tool client, through its generic, methodology independent design, has provided a pilot with which future ideas may be explored

    Towards a Tool-based Development Methodology for Pervasive Computing Applications

    Get PDF
    Despite much progress, developing a pervasive computing application remains a challenge because of a lack of conceptual frameworks and supporting tools. This challenge involves coping with heterogeneous devices, overcoming the intricacies of distributed systems technologies, working out an architecture for the application, encoding it in a program, writing specific code to test the application, and finally deploying it. This paper presents a design language and a tool suite covering the development life-cycle of a pervasive computing application. The design language allows to define a taxonomy of area-specific building-blocks, abstracting over their heterogeneity. This language also includes a layer to define the architecture of an application, following an architectural pattern commonly used in the pervasive computing domain. Our underlying methodology assigns roles to the stakeholders, providing separation of concerns. Our tool suite includes a compiler that takes design artifacts written in our language as input and generates a programming framework that supports the subsequent development stages, namely implementation, testing, and deployment. Our methodology has been applied on a wide spectrum of areas. Based on these experiments, we assess our approach through three criteria: expressiveness, usability, and productivity

    A Framework for Agile Development of Component-Based Applications

    Get PDF
    Agile development processes and component-based software architectures are two software engineering approaches that contribute to enable the rapid building and evolution of applications. Nevertheless, few approaches have proposed a framework to combine agile and component-based development, allowing an application to be tested throughout the entire development cycle. To address this problematic, we have built CALICO, a model-based framework that allows applications to be safely developed in an iterative and incremental manner. The CALICO approach relies on the synchronization of a model view, which specifies the application properties, and a runtime view, which contains the application in its execution context. Tests on the application specifications that require values only known at runtime, are automatically integrated by CALICO into the running application, and the captured needed values are reified at execution time to resume the tests and inform the architect of potential problems. Any modification at the model level that does not introduce new errors is automatically propagated to the running system, allowing the safe evolution of the application. In this paper, we illustrate the CALICO development process with a concrete example and provide information on the current implementation of our framework
    corecore