11,714 research outputs found

    Physics-Based Swarm Intelligence for Disaster Relief Communications

    Get PDF
    This study explores how a swarm of aerial mobile vehicles can provide network connectivity and meet the stringent requirements of public protection and disaster relief operations. In this context, we design a physics-based controlled mobility strategy, which we name the extended Virtual Force Protocol (VFPe), allowing self-propelled nodes, and in particular here unmanned aerial vehicles, to fly autonomously and cooperatively. In this way, ground devices scattered on the operation site may establish communications through the wireless multi-hop communication routes formed by the network of aerial nodes. We further investigate through simulations the behavior of the VFPe protocol, notably focusing on the way node location information is disseminated into the network as well as on the impact of the number of exploration nodes on the overall network performance.Comment: in International Conference on Ad Hoc Networks and Wireless, Jul 2016, Lille, Franc

    Developing an Efficient DMCIS with Next-Generation Wireless Networks

    Get PDF
    The impact of extreme events across the globe is extraordinary which continues to handicap the advancement of the struggling developing societies and threatens most of the industrialized countries in the globe. Various fields of Information and Communication Technology have widely been used for efficient disaster management; but only to a limited extent though, there is a tremendous potential for increasing efficiency and effectiveness in coping with disasters with the utilization of emerging wireless network technologies. Early warning, response to the particular situation and proper recovery are among the main focuses of an efficient disaster management system today. Considering these aspects, in this paper we propose a framework for developing an efficient Disaster Management Communications and Information System (DMCIS) which is basically benefited by the exploitation of the emerging wireless network technologies combined with other networking and data processing technologies.Comment: 6 page

    A Secure Lightweight Approach of Node Membership Verification in Dense HDSN

    Full text link
    In this paper, we consider a particular type of deployment scenario of a distributed sensor network (DSN), where sensors of different types and categories are densely deployed in the same target area. In this network, the sensors are associated with different groups, based on their functional types and after deployment they collaborate with one another in the same group for doing any assigned task for that particular group. We term this sort of DSN as a heterogeneous distributed sensor network (HDSN). Considering this scenario, we propose a secure membership verification mechanism using one-way accumulator (OWA) which ensures that, before collaborating for a particular task, any pair of nodes in the same deployment group can verify each other-s legitimacy of membership. Our scheme also supports addition and deletion of members (nodes) in a particular group in the HDSN. Our analysis shows that, the proposed scheme could work well in conjunction with other security mechanisms for sensor networks and is very effective to resist any adversary-s attempt to be included in a legitimate group in the network.Comment: 6 page

    Enabling Disaster Relief Supply Chain Visibility (SCV) and Supply Chain Coordination (SCC)

    Get PDF
    In disaster relief–humanitarian logistics (DRHL), supply chain visibility (SCV) and supply chain coordination (SCC) remain crucial to supply chain performance, when demand and lead times are volatile. Many DRHL solutions based on operations research or other such models in the literature, rely on SCV and SCC. However, there is a paucity of literature on how to enable SCV and SCC immediately after disasters strike. This paper proposes decentralised, peer–to–peer (P2P) systems architecture (SA) that augments existing information systems and communications networks in use. This architecture has additional capabilities that enable a ‘low cost version’ of SCV and SCC. By identifying antecedents and characteristics of agile and quick response supply chain and introducing them into DRHL, we lay the framework for enabling SCV and SCC in DRHL. Based on this completed research on the systems architecture and framework, this paper outlines briefly, an implementable version of an artefact for such deployment

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin

    Chapter Tactical Communications for Cooperative SAR Robot Missions

    Get PDF
    This chapter describes how the ICARUS communications (COM) team defined, developed and implemented an integrated wireless communication system to ensure an interoperable and dependable networking capability for both human and robotic search and rescue field teams and crisis managers. It starts explaining the analysis of the requirements and the context of the project, the existing solutions and the design of the ICARUS communication system to fulfil all the project needs. Next, it addresses the implementation process of the required networking capabilities, and finally, it explains how the ICARUS communication system and associated tools have been integrated in the overall mission systems and have been validated to provide reliable communications for real‐time information sharing during search and rescue operations in hostile conditions

    Tactical Communications for Cooperative SAR Robot Missions

    Get PDF
    This chapter describes how the ICARUS communications (COM) team defined, developed and implemented an integrated wireless communication system to ensure an interoperable and dependable networking capability for both human and robotic search and rescue field teams and crisis managers. It starts explaining the analysis of the requirements and the context of the project, the existing solutions and the design of the ICARUS communication system to fulfil all the project needs. Next, it addresses the implementation process of the required networking capabilities, and finally, it explains how the ICARUS communication system and associated tools have been integrated in the overall mission systems and have been validated to provide reliable communications for real‐time information sharing during search and rescue operations in hostile conditions

    Energy aware and privacy preserving protocols for ad hoc networks with applications to disaster management

    Get PDF
    Disasters can have a serious impact on the functioning of communities and societies. Disaster management aims at providing efficient utilization of resources during pre-disaster (e.g. preparedness and prevention) and post-disaster (e.g. recovery and relief) scenarios to reduce the impact of disasters. Wireless sensors have been extensively used for early detection and prevention of disasters. However, the sensor\u27s operating environment may not always be congenial to these applications. Attackers can observe the traffic flow in the network to determine the location of the sensors and exploit it. For example, in intrusion detection systems, the information can be used to identify coverage gaps and avoid detection. Data source location privacy preservation protocols were designed in this work to address this problem. Using wireless sensors for disaster preparedness, recovery and relief operations can have high deployment costs. Making use of wireless devices (e.g. smartphones and tablets) widely available among people in the affected region is a more practical approach. Disaster preparedness involves dissemination of information among the people to make them aware of the risks they will face in the event of a disaster and how to actively prepare for them. The content is downloaded by the people on their smartphones and tablets for ubiquitous access. As these devices are primarily constrained by their available energy, this work introduces an energy-aware peer-to-peer file sharing protocol for efficient distribution of the content and maximizing the lifetime of the devices. Finally, the ability of the wireless devices to build an ad hoc network for capturing and collecting data for disaster relief and recovery operations was investigated. Specifically, novel energy-adaptive mechanisms were designed for autonomous creation of the ad hoc network, distribution of data capturing task among the devices, and collection of data with minimum delay --Abstract, page iii
    corecore