2,321 research outputs found

    Architectural study of high-speed networks with optical bypassing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 155-158).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.We study the routing and wavelength assignment (RWA) problem in wavelength division multiplexing (WDM) networks with no wavelength conversion. In a high-speed core network, the traffic can be separated into two components. The first is the aggregated traffic from a large number of small-rate users. Each individual session is not necessarily static but the combined traffic streams between each pair of access nodes are approximately static. We support this traffic by static provisioning of routes and wavelengths. In particular, we develop several off-line RWA algorithms which use the minimum number of wavelengths to provide I dedicated wavelength paths between each pair of access nodes for basic all-to-all connectivity. The topologies we consider are arbitrary tree, bidirectional ring, two-dimensional torus, and binary hypercube topologies. We observe that wavelength converters do not decrease the wavelength requirement to support this uniform all-to-all traffic. The second traffic component contains traffic sessions from a small number of large-rate users and cannot be well approximated as static due to insufficient aggregation. To support this traffic component, we perform dynamic provisioning of routes and wavelengths. Adopting a nonblocking formulation, we assume that the basic traffic unit is a wavelength, and the traffic matrix changes from time to time but always belongs to a given traffic set.(cont.) More specifically, let N be the number of access nodes, and k denote an integer vector [k, k2, ..., kN]. We define the set of k-allowable traffic matrices to be such that, in each traffic matrix, node i, </= 1 </= N, can transmit at most ki wavelengths and receive at most ki wavelengths. We develop several on-line RWA algorithms which can support all the k-allowable traffic matrices in a rearrangeably nonblocking fashion while using close to the minimum number of wavelengths and incurring few rearrangements of existing lightpaths, if any, for each new session request. The topologies we consider are the same as for static provisioning. We observe that the number of lightpath rearrangements per new session request is proportional to the maximum number of lightpaths supported on a single wavelength. In addition, we observe that the number of lightpath rearrangements depends on the topological properties, e.g. network size, but not on the traffic volume represented by k as we increase k by some integer factor. Finally, we begin exploring an RWA problem in which traffic is switched in bands of wavelengths rather than individual wavelengths. We present some preliminary results based on the star topology.by Poompat Saengudomlert.Ph.D

    Framework for waveband switching in multigranular optical networks: part I-multigranular cross-connect architectures

    Get PDF
    Optical networks using wavelength-division multiplexing (WDM) are the foremost solution to the ever-increasing traffic in the Internet backbone. Rapid advances in WDM technology will enable each fiber to carry hundreds or even a thousand wavelengths (using dense-WDM, or DWDM, and ultra-DWDM) of traffic. This, coupled with worldwide fiber deployment, will bring about a tremendous increase in the size of the optical cross-connects, i.e., the number of ports of the wavelength switching elements. Waveband switching (WBS), wherein wavelengths are grouped into bands and switched as a single entity, can reduce the cost and control complexity of switching nodes by minimizing the port count. This paper presents a detailed study on recent advances and open research issues in WBS networks. In this study, we investigate in detail the architecture for various WBS cross-connects and compare them in terms of the number of ports and complexity and also in terms of how flexible they are in adjusting to dynamic traffic. We outline various techniques for grouping wavelengths into bands for the purpose of WBS and show how traditional wavelength routing is different from waveband routing and why techniques developed for wavelength-routed networks (WRNs) cannot be simply applied to WBS networks. We also outline how traffic grooming of subwavelength traffic can be done in WBS networks. In part II of this study [Cao , submitted to J. Opt. Netw.], we study the effect of wavelength conversion on the performance of WBS networks with reconfigurable MG-OXCs. We present an algorithm for waveband grouping in wavelength-convertible networks and evaluate its performance. We also investigate issues related to survivability in WBS networks and show how waveband and wavelength conversion can be used to recover from failures in WBS networks

    A service-oriented hybrid access network and clouds architecture

    Get PDF
    Many telecom operators are deploying their own cloud infrastructure with the two-fold objective of providing cloud services to their customers and enabling network function virtualization. In this article we present an architecture we call SHINE, which focuses on orchestrating cloud with heterogeneous access and core networks. In this architecture intra and inter DC connectivity is dynamically controlled, maximizing the overall performance in terms of throughput and latency while minimizing total costs. The main building blocks are: a future-proof network architecture that can scale to offer potentially unlimited bandwidth based on an active remote node (ARN) to interface end-users and the core network; an innovative distributed DC architecture consisting of micro-DCs placed in selected core locations to accelerate content delivery, reducing core network traffic, and ensuring very low latency; and dynamic orchestration of the distributed DC and access and core network segments. SHINE will provide unprecedented quality of experience, greatly reducing costs by coordinating network and cloud and facilitating service chaining by virtualizing network functions.Peer ReviewedPostprint (author’s final draft

    Fiber amplifiers, directly modulated transmitters and a ring network structure for optical communications

    Get PDF
    The three technologies that are considered the key elements in building a metropolitan area optical network are studied in this thesis. They are optical amplification, high-speed low cost transmitters and ring network structures. These studies concentrate on cost reduction of these three technologies thus enabling the use of optical networks in small customer base metropolitan areas. The research on optical amplification concentrated first on the solution doping process, at present the most used method for producing erbium doped fiber. It was found that separationing the soot growth and the sintering improved the uniformity of the porous layer. This made the homogeneity of the doping concentration in the fiber core better. The effects of index profile variations that arise from the non-ideal solution doping process were also simulated. In the search for a better doping method a new nanoparticle glass-forming process, the direct nanoparticle deposition, was developed. In this process the doping is done simultaneously with glass formation. Utilizing this new process it was possible to improve the uniformity of the doping resulting in higher usable doping levels and shorter erbium doped fiber lengths in the amplifiers. There were fewer limitations in the amplifier caused by optical non-linearities and polarization mode dispersion since shorter fiber lengths were needed. The double cladding fiber, which avoids the costly coupling of the pump laser into a single mode waveguide, was also studied. This pumping scheme was found to improve the inversion uniformity in the erbium doped fiber core thereby enhancing the power conversion efficiency for the long wavelength band amplifier. In characterizing the erbium doped fiber amplifier the gain and noise figure was measured with a temporal filter setup. It was made of simple, low cost components but yielded accurate measurements since the noise originating from the amplified spontaneous emission was measured at the signal wavelength. In the study of fiber amplifier controlling schemes the input power of the fiber amplifier was successfully used to regulate the pump laser. This feed-forward control scheme provides a simple, low cost control and managment system for the erbium doped fiber amplifier in metropolitan area network applications that require flexible adding and dropping of wavelength channels. The transmitter research focused on the DFB laser due to its simplicity and low cost structure. A solid state Fabry-Perot etalon made from double polished silicon chip was used as a frequency discriminator in the chirp analyser developed for the DFB lasers. This wavelength discriminator did not require repeated calibration or active stabilisation and was controled electrically enabling automatic measurements. The silicon Fabry-Perot etalon was also used for simultaneous spectral filtering and wavelength control of the laser. The usable dispersion limited transmission length was increased when the filter was used in conjunction with the directly modulated distributed feedback laser transmitter. The combination of spatial multiplexing and dense wavelength division multiplexing in ring topology was investigated in the course of the research on the ring network as the feeder part of the metropolitan network. A new way to organize different wavelengths and fibers was developed. This ring network structure was simulated and an experimental ring network built. The results of the studies demonstrated that the same limitations effecting uni-directional ring structures also are the main limitations on the scalability of the spatial and wavelength division multiplexed ring networks based on bi-directional transmission when the node spacing is short. The developed ring network structure demonstrated major cost reductions when compared with the heavy use of wavelength division multiplexing. The node structure was also greatly simplified resulting in less need for different wavelength transmitters in each node. Furthermore the node generated only minor losses for the passing signals thus reducing the need for optical amplification.reviewe

    A Comparison of Energy Recovery by PATs against Direct Variable Speed Pumping in Water Distribution Networks

    Get PDF
    Water systems are usually considered low efficiency systems, due to the large amount of energy that is lost by water leakage and dissipated by pressure reducing valves to control the leakage itself. In water distribution networks, water is often pumped from the source to an elevated tank or reservoir and then supplied to the users. A large energy recovery can be realized by the installation of energy production devices (EPDs) to exploit the excess of pressure that would be dissipated by regulation valves. The feasibility of such a sustainable strategy depends on the potential of energy savings and the amount of energy embedded in water streams, assessed by means of efficiency measures. Alternatively, energy savings can be pursued if the water is directly pumped to the network, bypassing the elevated reservoir. This study focuses on the comparison of two solutions to supply a real network, assessed as a case study. The first solution consists of water pumping to a reservoir, located upstream of the network; the excess of energy is saved by the employment of a pump as turbine (PAT). The second scenario is characterized by a smaller pressure head since a direct variable speed pumping is performed, bypassing the reservoir. The comparison has been carried out in terms of required energy, assessed by means of a new energy index and two literature efficiency indices. Furthermore, differing design conditions have been analyzed by varying the pumping head of both the scenarios, corresponding to different distances and elevation of the water source

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization
    • …
    corecore