28 research outputs found

    Designing A Solar and Motor-Based Hybrid Powered Mobile Sprinkler System for Small-Scale Irrigation: A Case Study for Auchi Polytechnic Demonstration Farm

    Get PDF
    This research aimed at developing a model of a hybrid-powered sprinkler irrigation system for use in the town of Auchi, Nigeria, a town with costly and intermittent electricity access. As a highly agrarian society, it is vital that market gardens developed by the family have access to water to provide their families with food and income from the selling of the crops. In Nigeria, changes in rainfall patterns are posing a threat to crop output. Irrigation can be utilized to maintain consistent production; however, motorized irrigation systems are both expensive to operate and environmentally unsustainable. Alternative watering methods are consequently required. Irrigation systems can be powered by readily available renewable energy sources. In order to irrigate 1 acre of vegetable planting in Auchi Polytechnic Demonstration Farm, Auchi, Nigeria, this research sought to design an effective Generator-solar hybrid system. The Using metrological data, mean wind speed and monthly solar irradiance of global radiation horizontal for the district were analysed. The mobile hybrid sprinkler system was optimally designed for a vegetables plant on 1-acre land with water requirement of 33.73 m3 d−1. The results upon fabrication showed that the system could effectively operate at speeds of 20 m s −1 without deformation. The research will, therefore, be a useful guideline in making investment decisions in hybrids irrigation systems. Keywords: Automated, Irrigation, Auchi Polytechnic Demonstration Farm, hybrid-powered sprinkler DOI: 10.7176/ISDE/12-4-01 Publication date:October 31st 2021

    Advances, processes today, methods of control and automation of greenhouses for crops

    Get PDF
    El presente artículo hace referencia a los procesos, métodos de control y automatización implementados en invernaderos, diseñados para generar microclimas específicos y el mejoramiento en la producción de cultivos en general. Se realiza una revisión de las variables asociadas al control de invernaderos métodos de control óptimo y control libre. Se estudian los medios de comunicación cableados e inalámbricos que hacen posible la interacción de dispositivos, junto a los distintos protocolos y estándares de comunicación propios de cada medio. Finalmente se hace un análisis de las tecnologías utilizadas y las herramientas más usadas divididas en herramientas de software (programas y aplicaciones) y hardware (sensores, procesadores actuadores, equipos de cómputo, robots, etc).This article makes reference to the processes, control methods and automation implemented on greenhouses, designed to generate specific microclimates and improved crop production in general. A review was made about variables associated with the control of greenhouses, optimal control methods and free control. Studies were made about the wiring communications and wireless that makes possible the interaction of devices, alongside different protocols and communication standards typical of each device. Finally, an analysis was made about the technologies used and tools used more often divided into software tools (programs and applications) and hardware (sensors, processors actuators, computer equipment, robots, etc)

    Smart Farming Using Robots in IoT to Increase Agriculture Yields: A Systematic Literature Review

    Get PDF
    Robots are beneficial in everyday life, especially in helping food security in the agricultural industry. Smart farming alone is not enough because smart farming is only automated without mobile hardware. The existence of robots can minimize human involvement in agriculture so that humans can maximize activities outside of farms. This Study aims to review articles regarding robots in smart farming to increase agriclture yields. This article systematically uses the systematic literature review method utilizing the Preferred reporting items for systematic review and meta-analyses (PRISMA) by submitting 3 Research Questions (RQ). According to the authors of the 3 RQs, it is necessary to represent the function and purpose of robots in farms and to be used in the context of the importance of robots in agriculture because of the potential impact of increase agriculture yields. This Research contributes to finding and answering 3 RQ, which are the roots of the use of robots. The results taken, the authors get 116 articles that can be reviewed and answered RQ and achieve goals. RQ 1 was responded to with the article's country of origin, research criteria, and the year of the article. In RQ 2 the author answered that Research often carried out 6 schemes, then the most Research was (Challenge Robots, Ethics, and Opinions in Agriculture) and (Design, Planning, and Robotic Systems in Agriculture). Finally, in RQ 3, the author describes the research scheme based on understanding related Research. The author hopes this basic scheme can be a benchmark or a new direction for future researchers and related agricultural industries to improve agricultural quality

    A fuzzy logic micro-controller enabled system for the monitoring of micro climatic parameters of a greenhouse

    Get PDF
    Motivation behind this master dissertation is to introduce a novel study called " A fuzzy logic micro-controller enabled system for the monitoring of micro-climatic parameters of a greenhouse" which is capable of intelligently monitoring and controlling the greenhouse climate conditions in a preprogrammed manner. The proposed system consists of three stations: Sensor Station, Coordinator Station, and Central Station. To allow for better monitoring of the climate condition in the greenhouse, fuzzy logic controller is embedded in the system as the system becomes more intelligent with fuzzy decision making. The sensor station is equipped with several sensor elements such as MQ-7 (Carbon monoxide sensor), DHT11 (Temperature and humidity sensor), LDR (light sensor), grove moisture sensor (soil moisture sensor). The communication between the sensor station and the coordinator station is achieved through XBee wireless modules connected to the Arduino Mega and the communication between coordinator station and the central station is also achieved via XBee wireless modules connected to the Arduino Mega. The experiments and tests of the system were carried out at one of IKHALA TVET COLLEGE’s greenhouses that is used for learning purposes by students studying agriculture at the college. The purpose of conducting the experiments at the college’s green house was to determine the functionality and reliability of the designed wireless sensor network using ZigBee wireless technology. The experiment result indicated that XBee modules could be used as one solution to lower the installation cost, increase flexibility and reliability and create a greenhouse management system that is only based on wireless nodes. The experiment result also showed that the system became more intelligent if fuzzy logic was used by the system for decision making. The overall system design showed advantages in cost, size, power, flexibility and intelligence. It is trusted that the results of the project will give the chance for further research and development of a low cost greenhouse monitoring system for commercial use.Electrical and Mining EngineeringM. Tech. (Electrical Engineering

    Utilization of Internet of Things and wireless sensor networks for sustainable smallholder agriculture

    Get PDF
    Agriculture is the economy’s backbone for most developing countries. Most of these countries suffer from insufficient agricultural production. The availability of real-time, reliable and farm-specific information may significantly contribute to more sufficient and sustained production. Typically, such information is usually fragmented and often does fit one-on-one with the farm or farm plot. Automated, precise and affordable data collection and dissemination tools are vital to bring such information to these levels. The tools must address details of spatial and temporal variability. The Internet of Things (IoT) and wireless sensor networks (WSNs) are useful technology in this respect. This paper investigates the usability of IoT and WSN for smallholder agriculture applications. An in-depth qualitative and quantitative analysis of relevant work over the past decade was conducted. We explore the type and purpose of agricultural parameters, study and describe available resources, needed skills and technological requirements that allow sustained deployment of IoT and WSN technology. Our findings reveal significant gaps in utilization of the technology in the context of smallholder farm practices caused by social, economic, infrastructural and technological barriers. We also identify a significant future opportunity to design and implement affordable and reliable data acquisition tools and frameworks, with a possible integration of citizen science

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Edge IoT Driven Framework for Experimental Investigation and Computational Modeling of Integrated Food, Energy, and Water System

    Get PDF
    As the global population soars from today’s 7.3 billion to an estimated 10 billion by 2050, the demand for Food, Energy, and Water (FEW) resources is expected to more than double. Such a sharp increase in demand for FEW resources will undoubtedly be one of the biggest global challenges. The management of food, energy, water for smart, sustainable cities involves a multi-scale problem. The interactions of these three dynamic infrastructures require a robust mathematical framework for analysis. Two critical solutions for this challenge are focused on technology innovation on systems that integrate food-energy-water and computational models that can quantify the FEW nexus. Information Communication Technology (ICT) and the Internet of Things (IoT) technologies are innovations that will play critical roles in addressing the FEW nexus stress in an integrated way. The use of sensors and IoT devices will be essential in moving us to a path of more productivity and sustainability. Recent advancements in IoT, Wireless Sensor Networks (WSN), and ICT are one lever that can address some of the environmental, economic, and technical challenges and opportunities in this sector. This dissertation focuses on quantifying and modeling the nexus by proposing a Leontief input-output model unique to food-energy-water interacting systems. It investigates linkage and interdependency as demand for resource changes based on quantifiable data. The interdependence of FEW components was measured by their direct and indirect linkage magnitude for each interaction. This work contributes to the critical domain required to develop a unique integrated interdependency model of a FEW system shying away from the piece-meal approach. The physical prototype for the integrated FEW system is a smart urban farm that is optimized and built for the experimental portion of this dissertation. The prototype is equipped with an automated smart irrigation system that uses real-time data from wireless sensor networks to schedule irrigation. These wireless sensor nodes are allocated for monitoring soil moisture, temperature, solar radiation, humidity utilizing sensors embedded in the root area of the crops and around the testbed. The system consistently collected data from the three critical sources; energy, water, and food. From this physical model, the data collected was structured into three categories. Food data consists of: physical plant growth, yield productivity, and leaf measurement. Soil and environment parameters include; soil moisture and temperature, ambient temperature, solar radiation. Weather data consists of rainfall, wind direction, and speed. Energy data include voltage, current, watts from both generation and consumption end. Water data include flow rate. The system provides off-grid clean PV energy for all energy demands of farming purposes, such as irrigation and devices in the wireless sensor networks. Future reliability of the off-grid power system is addressed by investigating the state of charge, state of health, and aging mechanism of the backup battery units. The reliability assessment of the lead-acid battery is evaluated using Weibull parametric distribution analysis model to estimate the service life of the battery under different operating parameters and temperatures. Machine learning algorithms are implemented on sensor data acquired from the experimental and physical models to predict crop yield. Further correlation analysis and variable interaction effects on crop yield are investigated

    Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments

    Full text link
    [ES] La introducción de soluciones tecnológicas en la agricultura permite reducir el uso de recursos y aumentar la producción de los cultivos. Además, la calidad del agua de regadío se puede monitorizar para asegurar la seguridad de los productos para el consumo humano. Sin embargo, la localización remota de la mayoría de los campos presenta un problema para proveer de cobertura inalámbrica a los nodos sensores y actuadores desplegados en los campos y los canales de agua para regadío. El trabajo presentado en esta tesis aborda el problema de habilitar la comunicación inalámbrica entre los dispositivos electrónicos desplegados para la monitorización de la calidad del agua y el campo a través de un protocolo de comunicación y arquitectura heterogéneos. La primera parte de esta tesis introduce los sistemas de agricultura de precisión (PA) y la importancia de la monitorización de la calidad del agua y el campo. Asimismo, las tecnologías que permiten la comunicación inalámbrica en sistemas PA y el uso de soluciones alternativas como el internet de las cosas bajo tierra (IoUT) y los vehículos aéreos no tripulados (UAV) se introducen también. Después, se realiza un análisis en profundidad del estado del arte respecto a los sensores para la monitorización del agua, el campo y las condiciones meteorológicas, así como sobre las tecnologías inalámbricas más empleadas en PA. Además, las tendencias actuales y los desafíos de los sistemas de internet de las cosas (IoT) para regadío, incluyendo las soluciones alternativas introducidas anteriormente, han sido abordados en detalle. A continuación, se presenta la arquitectura propuesta para el sistema, la cual incluye las áreas de interés para las actividades monitorización que incluye las áreas de los canales y el campo. A su vez, la descripción y los algoritmos de operación de los nodos sensores contemplados para cada área son proporcionados. El siguiente capítulo detalla el protocolo de comunicación heterogéneo propuesto, incluyendo los mensajes y alertas del sistema. Adicionalmente, se presenta una nueva topología de árbol para redes híbridas LoRa/WiFi multisalto. Las funcionalidades específicas adicionales concebidas para la arquitectura propuesta están descritas en el siguiente capítulo. Éstas incluyen algoritmos de agregación de datos para la topología propuesta, un esquema de las amenazas de seguridad para los sistemas PA, algoritmos de ahorro de energía y tolerancia a fallos, comunicación bajo tierra para IoUT y el uso de drones para adquisición de datos. Después, los resultados de las simulaciones para las soluciones propuestas anteriormente son presentados. Finalmente, se tratan las pruebas realizadas en entornos reales para el protocolo heterogéneo presentado, las diferentes estrategias de despliegue de los nodos empleados, el consumo energético y la función de cuantificación de fruta. Estas pruebas demuestran la validez de la arquitectura y protocolo de comunicación heterogéneos que se han propuesto.[CA] La introducció de solucions tecnològiques en l'agricultura permet reduir l'ús de recursos i augmentar la producció dels cultius. A més, la qualitat de l'aigua de regadiu es pot monitoritzar per assegurar la qualitat dels productes per al consum humà. No obstant això, la localització remota de la majoria dels camps presenta un problema per a proveir de cobertura sense fils als nodes sensors i actuadors desplegats als camps i els canals d'aigua per a regadiu. El treball presentat en aquesta tesi tracta el problema d'habilitar la comunicació sense fils entre els dispositius electrònics desplegats per a la monitorització de la qualitat de l'aigua i el camp a través d'un protocol de comunicació i arquitectura heterogenis. La primera part d'aquesta tesi introdueix els sistemes d'agricultura de precisió (PA) i la importància de la monitorització de la qualitat de l'aigua i el camp. Així mateix, també s'introdueixen les tecnologies que permeten la comunicació sense fils en sistemes PA i l'ús de solucions alternatives com l'Internet de les coses sota terra (IoUT) i els vehicles aeris no tripulats (UAV). Després, es realitza una anàlisi en profunditat de l'estat de l'art respecte als sensors per a la monitorització de l'aigua, el camp i les condicions meteorològiques, així com sobre les tecnologies sense fils més emprades en PA. S'aborden les tendències actuals i els reptes dels sistemes d'internet de les coses (IoT) per a regadiu, incloent les solucions alternatives introduïdes anteriorment. A continuació, es presenta l'arquitectura proposada per al sistema, on s'inclouen les àrees d'interès per a les activitats monitorització en els canals i el camp. Finalment, es proporciona la descripció i els algoritmes d'operació dels nodes sensors contemplats per a cada àrea. El següent capítol detalla el protocol de comunicació heterogeni proposat, així como el disseny del missatges i alertes que el sistema proposa. A més, es presenta una nova topologia d'arbre per a xarxes híbrides Lora/WiFi multi-salt. Les funcionalitats específiques addicionals concebudes per l'arquitectura proposada estan descrites en el següent capítol. Aquestes inclouen algoritmes d'agregació de dades per a la topologia proposta, un esquema de les alertes de seguretat per als sistemes PA, algoritmes d'estalvi d'energia i tolerància a fallades, comunicació per a IoUT i l'ús de drons per a adquisició de dades. Després, es presenten els resultats de les simulacions per a les solucions proposades. Finalment, es duen a terme les proves en entorns reals per al protocol heterogeni dissenyat. A més s'expliquen les diferents estratègies de desplegament dels nodes empleats, el consum energètic, així com, la funció de quantificació de fruita. Els resultats d'aquetes proves demostren la validesa de l'arquitectura i protocol de comunicació heterogenis propost en aquesta tesi.[EN] The introduction of technological solutions in agriculture allows reducing the use of resources and increasing the production of the crops. Furthermore, the quality of the water for irrigation can be monitored to ensure the safety of the produce for human consumption. However, the remote location of most fields presents a problem for providing wireless coverage to the sensing nodes and actuators deployed on the fields and the irrigation water canals. The work presented in this thesis addresses the problem of enabling wireless communication among the electronic devices deployed for water quality and field monitoring through a heterogeneous communication protocol and architecture. The first part of the dissertation introduces Precision Agriculture (PA) systems and the importance of water quality and field monitoring. In addition, the technologies that enable wireless communication in PA systems and the use of alternative solutions such as Internet of Underground Things (IoUT) and Unmanned Aerial Vehicles (UAV) are introduced as well. Then, an in-depth analysis on the state of the art regarding the sensors for water, field and meteorology monitoring and the most utilized wireless technologies in PA is performed. Furthermore, the current trends and challenges for Internet of Things (IoT) irrigation systems, including the alternate solutions previously introduced, have been discussed in detail. Then, the architecture for the proposed system is presented, which includes the areas of interest for the monitoring activities comprised of the canal and field areas. Moreover, the description and operation algorithms of the sensor nodes contemplated for each area is provided. The next chapter details the proposed heterogeneous communication protocol including the messages and alerts of the system. Additionally, a new tree topology for hybrid LoRa/WiFi multi-hop networks is presented. The specific additional functionalities intended for the proposed architecture are described in the following chapter. It includes data aggregation algorithms for the proposed topology, an overview on the security threats of PA systems, energy-saving and fault-tolerance algorithms, underground communication for IoUT, and the use of drones for data acquisition. Then, the simulation results for the solutions previously proposed are presented. Finally, the tests performed in real environments for the presented heterogeneous protocol, the different deployment strategies for the utilized nodes, the energy consumption, and a functionality for fruit quantification are discussed. These tests demonstrate the validity of the proposed heterogeneous architecture and communication protocol.García García, L. (2021). Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17422
    corecore