8,919 research outputs found

    A Pattern-based Approach towards Modular Safety Analysis and Argumentation

    Get PDF
    International audienceSafety standards recommend (if not dictate) performing many analyses during the concept phase of development as well as the early adoption of multiple measures at the architectural design level. In practice, the reuse of architectural measures or safety mechanisms is widely-spread, especially in well-understood domains, as is reusing the corresponding safety-cases aiming to document and prove the fulfillment of the underlying safety goals. Safety-cases in the automotive domain are not well-integrated into architectural models and as such do not provide comprehensible and reproducible argumentation nor any evidence for argument correctness. The reuse is mostly ad-hoc, with loss of knowledge and traceability and lack of consistency or process maturity as well as being the most widely spread and cited drawbacks.Using a simplified description of software functions and their most common error management subtypes (avoidance, detection, handling, ..) we propose to define a pattern library covering known solution algorithms and architectural measures/constraints in a seamless holistic model-based approach with corresponding tool support. The pattern libraries would comprise the requirement the pattern covers and the architecture elements/ measures / constraints required and may include deployment or scheduling strategies as well as the supporting safety case template, which would then be integrated into existing development environments. This paper explores this approach using an illustrative example

    Putting Teeth into Open Architectures: Infrastructure for Reducing the Need for Retesting

    Get PDF
    Proceedings Paper (for Acquisition Research Program)The Navy is currently implementing the open-architecture framework for developing joint interoperable systems that adapt and exploit open-system design principles and architectures. This raises concerns about how to practically achieve dependability in software-intensive systems with many possible configurations when: 1) the actual configuration of the system is subject to frequent and possibly rapid change, and 2) the environment of typical reusable subsystems is variable and unpredictable. Our preliminary investigations indicate that current methods for achieving dependability in open architectures are insufficient. Conventional methods for testing are suited for stovepipe systems and depend strongly on the assumptions that the environment of a typical system is fixed and known in detail to the quality-assurance team at test and evaluation time. This paper outlines new approaches to quality assurance and testing that are better suited for providing affordable reliability in open architectures, and explains some of the additional technical features that an Open Architecture must have in order to become a Dependable Open Architecture.Naval Postgraduate School Acquisition Research ProgramApproved for public release; distribution is unlimited

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team

    The JKind Model Checker

    Full text link
    JKind is an open-source industrial model checker developed by Rockwell Collins and the University of Minnesota. JKind uses multiple parallel engines to prove or falsify safety properties of infinite state models. It is portable, easy to install, performance competitive with other state-of-the-art model checkers, and has features designed to improve the results presented to users: inductive validity cores for proofs and counterexample smoothing for test-case generation. It serves as the back-end for various industrial applications.Comment: CAV 201

    Development, testing, and certification of Owens-Illinois model SEC-601 solar energy collector system

    Get PDF
    The final results are presented of the additional development work on the existing air-cooled solar energy collector subsystem for use with solar heating and cooling systems. The report discusses the intended use of the final report, describes the deliverable end items, lists program objectives, relates how they were accomplished, deals with problems encountered during fabrication and testing, and includes a certification statement of performance. The report shows that the products developed are marketable and suitable for public use

    Integrated Design Approach to Build a Safe and Sustainable Dual Intended Use Center in Praslin Island, Seychelles

    Get PDF
    A flexible multi-purpose center for a dual intended use—hospitality and observation and research related to climate change—has been designed in the fragile environment of Praslin Island, Seychelles. The technical solutions adopted for a low environmental impact LCA based in the designed center during the life cycle will be illustrated: starting from the local supply raw materials, the self-disassembling construction system, the described process is compatible with the site use that the owners have foreseen. Specific logistic systems have been chosen both to the transportation of the material on the site, and to the integrated structural and architectural solutions. In addition, a reconstruction of the natural characteristics of the building site has been developed both by google-earth observation and with a survey directly on the site through processing acquired images. The multi-disciplinary perspective through which the project has been conceived shows beneficial effects in terms of reduced impact on the original and resilient natural environment. Future developments of the work will be devoted to the optimization of this multi-disciplinary approach

    Multi-core Interference-Sensitive WCET Analysis Leveraging Runtime Resource Capacity Enforcement

    Get PDF
    The performance and power efficiency of multi-core processors are attractive features for safety-critical applications, as in avionics. But increased integration and average-case performance optimizations pose challenges when deploying them for such domains. In this paper we propose a novel approach to compute a interference-sensitive Worst-Case Execution Time (isWCET) considering variable accesses delays due to the concurrent use of shared resources in multi-core processors. Thereby we tackle the problem of temporal partitioning as it is required by safety-critical applications. In particular, we introduce additional phases to state-of-the-art timing analysis techniques to analyse an applications resource usage and compute an interference delay. We further complement the offline analysis with a runtime monitoring concept to enforce resource usage guarantees. The concepts are evaluated on Freescale's P4080 multi-core processor in combination with SYSGO's commercial real-time operating system PikeOS and AbsInt's timing analysis framework aiT. We abstract real applications' behavior using a representative task set of the EEMBC Autobench benchmark suite. Our results show a reduction of up to 75% of the multi-core Worst-Case Execution Time (WCET), while implementing full transparency to the temporal and functional behavior of applications, enabling the seamless integration of legacy applications
    • …
    corecore