27,866 research outputs found

    Model-driven engineering approach to design and implementation of robot control system

    Full text link
    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into the typical workflow of model-driven engineering development.Comment: Presented at DSLRob 2011 (arXiv:cs/1212.3308

    PuLSE-I: Deriving instances from a product line infrastructure

    Get PDF
    Reusing assets during application engineering promises to improve the efficiency of systems development. However, in order to benefit from reusable assets, application engineering processes must incorporate when and how to use the reusable assets during single system development. However, when and how to use a reusable asset depends on what types of reusable assets have been created.Product line engineering approaches produce a reusable infrastructure for a set of products. In this paper, we present the application engineering process associated with the PuLSE product line software engineering method - PuLSE-I. PuLSE-I details how single systems can be built efficiently from the reusable product line infrastructure built during the other PuLSE activities

    Towards semantic software engineering environments

    Get PDF
    Software tools processing partially common set of data should share an understanding of what these data mean. Since ontologies have been used to express formally a shared understanding of information, we argue that they are a way towards Semantic SEEs. In this paper we discuss an ontology-based approach to tool integration and present ODE, an ontology-based SEE

    Organization of Multi-Agent Systems: An Overview

    Full text link
    In complex, open, and heterogeneous environments, agents must be able to reorganize towards the most appropriate organizations to adapt unpredictable environment changes within Multi-Agent Systems (MAS). Types of reorganization can be seen from two different levels. The individual agents level (micro-level) in which an agent changes its behaviors and interactions with other agents to adapt its local environment. And the organizational level (macro-level) in which the whole system changes it structure by adding or removing agents. This chapter is dedicated to overview different aspects of what is called MAS Organization including its motivations, paradigms, models, and techniques adopted for statically or dynamically organizing agents in MAS.Comment: 12 page
    • 

    corecore