5,470 research outputs found

    DCDIDP: A distributed, collaborative, and data-driven intrusion detection and prevention framework for cloud computing environments

    Get PDF
    With the growing popularity of cloud computing, the exploitation of possible vulnerabilities grows at the same pace; the distributed nature of the cloud makes it an attractive target for potential intruders. Despite security issues delaying its adoption, cloud computing has already become an unstoppable force; thus, security mechanisms to ensure its secure adoption are an immediate need. Here, we focus on intrusion detection and prevention systems (IDPSs) to defend against the intruders. In this paper, we propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention system (DCDIDP). Its goal is to make use of the resources in the cloud and provide a holistic IDPS for all cloud service providers which collaborate with other peers in a distributed manner at different architectural levels to respond to attacks. We present the DCDIDP framework, whose infrastructure level is composed of three logical layers: network, host, and global as well as platform and software levels. Then, we review its components and discuss some existing approaches to be used for the modules in our proposed framework. Furthermore, we discuss developing a comprehensive trust management framework to support the establishment and evolution of trust among different cloud service providers. © 2011 ICST

    ANCHOR: logically-centralized security for Software-Defined Networks

    Get PDF
    While the centralization of SDN brought advantages such as a faster pace of innovation, it also disrupted some of the natural defenses of traditional architectures against different threats. The literature on SDN has mostly been concerned with the functional side, despite some specific works concerning non-functional properties like 'security' or 'dependability'. Though addressing the latter in an ad-hoc, piecemeal way, may work, it will most likely lead to efficiency and effectiveness problems. We claim that the enforcement of non-functional properties as a pillar of SDN robustness calls for a systemic approach. As a general concept, we propose ANCHOR, a subsystem architecture that promotes the logical centralization of non-functional properties. To show the effectiveness of the concept, we focus on 'security' in this paper: we identify the current security gaps in SDNs and we populate the architecture middleware with the appropriate security mechanisms, in a global and consistent manner. Essential security mechanisms provided by anchor include reliable entropy and resilient pseudo-random generators, and protocols for secure registration and association of SDN devices. We claim and justify in the paper that centralizing such mechanisms is key for their effectiveness, by allowing us to: define and enforce global policies for those properties; reduce the complexity of controllers and forwarding devices; ensure higher levels of robustness for critical services; foster interoperability of the non-functional property enforcement mechanisms; and promote the security and resilience of the architecture itself. We discuss design and implementation aspects, and we prove and evaluate our algorithms and mechanisms, including the formalisation of the main protocols and the verification of their core security properties using the Tamarin prover.Comment: 42 pages, 4 figures, 3 tables, 5 algorithms, 139 reference

    Towards Specifying And Evaluating The Trustworthiness Of An AI-Enabled System

    Get PDF
    Applied AI has shown promise in the data processing of key industries and government agencies to extract actionable information used to make important strategical decisions. One of the core features of AI-enabled systems is the trustworthiness of these systems which has an important implication for the robustness and full acceptance of these systems. In this paper, we explain what trustworthiness in AI-enabled systems means, and the key technical challenges of specifying, and verifying trustworthiness. Toward solving these technical challenges, we propose a method to specify and evaluate the trustworthiness of AI-based systems using quality-attribute scenarios and design tactics. Using our trustworthiness scenarios and design tactics, we can analyze the architectural design of AI-enabled systems to ensure that trustworthiness has been properly expressed and achieved.The contributions of the thesis include (i) the identification of the trustworthiness sub-attributes that affect the trustworthiness of AI systems (ii) the proposal of trustworthiness scenarios to specify trustworthiness in an AI system (iii) a design checklist to support the analysis of the trustworthiness of AI systems and (iv) the identification of design tactics that can be used to achieve trustworthiness in an AI system
    corecore