14,722 research outputs found

    The Mundane Computer: Non-Technical Design Challenges Facing Ubiquitous Computing and Ambient Intelligence

    Full text link
    Interdisciplinary collaboration, to include those who are not natural scientists, engineers and computer scientists, is inherent in the idea of ubiquitous computing, as formulated by Mark Weiser in the late 1980s and early 1990s. However, ubiquitous computing has remained largely a computer science and engineering concept, and its non-technical side remains relatively underdeveloped. The aim of the article is, first, to clarify the kind of interdisciplinary collaboration envisaged by Weiser. Second, the difficulties of understanding the everyday and weaving ubiquitous technologies into the fabric of everyday life until they are indistinguishable from it, as conceived by Weiser, are explored. The contributions of Anne Galloway, Paul Dourish and Philip Agre to creating an understanding of everyday life relevant to the development of ubiquitous computing are discussed, focusing on the notions of performative practice, embodied interaction and contextualisation. Third, it is argued that with the shift to the notion of ambient intelligence, the larger scale socio-economic and socio-political dimensions of context become more explicit, in contrast to the focus on the smaller scale anthropological study of social (mainly workplace) practices inherent in the concept of ubiquitous computing. This can be seen in the adoption of the concept of ambient intelligence within the European Union and in the focus on rebalancing (personal) privacy protection and (state) security in the wake of 11 September 2001. Fourth, the importance of adopting a futures-oriented approach to discussing the issues arising from the notions of ubiquitous computing and ambient intelligence is stressed, while the difficulty of trying to achieve societal foresight is acknowledged

    Heart Failure Monitoring System Based on Wearable and Information Technologies

    Get PDF
    In Europe, Cardiovascular Diseases (CVD) are the leading source of death, causing 45% of all deceases. Besides, Heart Failure, the paradigm of CVD, mainly affects people older than 65. In the current aging society, the European MyHeart Project was created, whose mission is to empower citizens to fight CVD by leading a preventive lifestyle and being able to be diagnosed at an early stage. This paper presents the development of a Heart Failure Management System, based on daily monitoring of Vital Body Signals, with wearable and mobile technologies, for the continuous assessment of this chronic disease. The System makes use of the latest technologies for monitoring heart condition, both with wearable garments (e.g. for measuring ECG and Respiration); and portable devices (such as Weight Scale and Blood Pressure Cuff) both with Bluetooth capabilitie

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Software infrastructure for wireless sensor and actuator networks

    Full text link
    In the development of large ad-hoc Wireless Sensor and Actuator Agent Networks (SANETS), a multitude of disparate problems are faced. In order for these networks to function, software must be able to effectively manage: unreliable dynamic distributed communication, the power constraints of un-wired devices, failure of hardware devices in hostile environments and the remote allocation of distributed processing tasks throughout the network. The solutions to these problems must be solved in a highly scalable manner. The paper describes the process of analysis of the requirements and presents a design of a service-oriented software infrastructure (middleware) solution for scalable ad-hoc networks, in a context of a system made of mobile sensors and actuators. © 2011 IEEE

    Include 2011 : The role of inclusive design in making social innovation happen.

    Get PDF
    Include is the biennial conference held at the RCA and hosted by the Helen Hamlyn Centre for Design. The event is directed by Jo-Anne Bichard and attracts an international delegation

    Combining Mobile Crowdsensing and Ecological Momentary Assessments in the Healthcare Domain

    Get PDF
    The increasing prevalence of smart mobile devices (e.g., smartphones) enables the combined use of mobile crowdsensing (MCS) and ecological momentary assessments (EMA) in the healthcare domain. By correlating qualitative longitudinal and ecologically valid EMA assessment data sets with sensor measurements in mobile apps, new valuable insights about patients (e.g., humans who suffer from chronic diseases) can be gained. However, there are numerous conceptual, architectural and technical, as well as legal challenges when implementing a respective software solution. Therefore, the work at hand (1) identifies these challenges, (2) derives respective recommendations, and (3) proposes a reference architecture for a MCS-EMA-platform addressing the defined recommendations. The required insights to propose the reference architecture were gained in several large-scale mHealth crowdsensing studies running for many years and different healthcare questions. To mention only two examples, we are running crowdsensing studies on questions for the tinnitus chronic disorder or psychological stress. We consider the proposed reference architecture and the identified challenges and recommendations as a contribution in two respects. First, they enable other researchers to align our practical studies with a baseline setting that can satisfy the variously revealed insights. Second, they are a proper basis to better compare data that was gathered using MCS and EMA. In addition, the combined use of MCS and EMA increasingly requires suitable architectures and associated digital solutions for the healthcare domain
    corecore