7,117 research outputs found

    Using real options to select stable Middleware-induced software architectures

    Get PDF
    The requirements that force decisions towards building distributed system architectures are usually of a non-functional nature. Scalability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to build distributed systems with middleware, which provide the application developer with primitives for managing the complexity of distribution, system resources, and for realising many of the non-functional requirements. As non-functional requirements evolve, the `coupling' between the middleware and architecture becomes the focal point for understanding the stability of the distributed software system architecture in the face of change. It is hypothesised that the choice of a stable distributed software architecture depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional requirements. Drawing on a case study that adequately represents a medium-size component-based distributed architecture, it is reported how a likely future change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with CORBA and the other with J2EE. An option-based model is derived to value the flexibility of the induced-architectures and to guide the selection. The hypothesis is verified to be true for the given change. The paper concludes with some observations that could stimulate future research in the area of relating requirements to software architectures

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    Get PDF
    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied

    A Process-Oriented Software Architecture Reconstruction Taxonomy

    Get PDF
    International audienceTo maintain and understand large applications, it is cru- cial to know their architecture. The first problem is that architectures are not explicitly represented in the code as classes and packages are. The second problem is that suc- cessful applications evolve over time so their architecture inevitably drifts. Reconstructing and checking whether the architecture is still valid is thus an important aid. While there is a plethora of approaches and techniques supporting architecture reconstruction, there is no comprehensive state of the art and it is often difficult to compare the ap- proaches. This article presents a first state of the art in soft- ware architecture reconstruction, with the desire to support the understanding of the field

    Software architecture visualisation

    Get PDF
    Tracing the history of software engineering reveals a series of abstractions. In early days, software engineers would construct software using machine code. As time progressed, software engineers and computer scientists developed higher levels of abstraction in order to provide tools to assist in building larger software systems. This has resulted in high-level languages, modelling languages, design patterns, and software architecture. Software architecture has been recognised as an important tool for designing and building software. Some research takes the view that the success or failure of a software development project depends heavily on the quality of the software architecture. For any software system, there are a number of individuals who have some interest in the architecture. These stakeholders have differing requirements of the software architecture depending on the role that they take. Stakeholders include the architects, designers, developers and also the sales, services and support teams and even the customer for the software. Communication and understanding of the architecture is essential in ensuring that each stakeholder can play their role during the design, development and deployment of that software system. Software visualisation has traditionally been focused on aiding the understanding of software systems by those who perform development and maintenance tasks on that software. In supporting developers and maintainers, software visualisation has been largely concerned with representing static and dynamic aspects of software at the code level. Typically, a software visualisation will represent control flow, classes, objects, import relations and other such low level abstractions of the software. This research identifies the fundamental issues concerning software architecture visualisation. It does this by identifying the practical use of software architecture in the real world, and considers the application of software visualisation techniques to the visualisation of software architecture. The aim of this research is to explore the ways in which software architecture visualisation can assist in the tasks undertaken by the differing stakeholders in a software system and its architecture. A prototype tool, named ArchVis, has been developed to enable the exploration of some of the fundamental issues in software architecture visualisation. ArchVis is a new approach to software architecture visualisation that is capable of utilising multiple sources and representations of architecture in order to generate multiple views of software architecture. The mechanism by which views are generated means that they can be more relevant to a wider collection of stakeholders in that architecture. During evaluation ArchVis demonstrates the capability of utilising a number of data sources in order to produce architecture visualisations. Arch Vis' view model is capable of generating the necessary views for architecture stakeholders and those stakeholders can navigate through the views and data in order to obtain relevant information. The results of evaluating ArchVis using a framework and scenarios demonstrate that the majority of the objectives of this research have been achieved

    Error propagation metrics from XMI

    Get PDF
    This work describes the production of an application Error Propagation Metrics from XMI which can extract process and display software design metrics from XMI files. The tool archives these design metrics in a standard XML format defined by a metric document type definition.;XMI is a flavour of XML allowing the description of UML models. As such, the XMI representation of a software design will include information from which a variety of software design metrics can be extracted. These metrics are potentially useful in improving the software design process, either throughout the early stages of design if a suitable XMI-enabled modelling tool is deployed, or to enable the comparison of completed software projects, by extracting design metrics from UML models reverse engineered from the implemented source code.;The tool is able to derive the error propagation of metrics from test XMI files created from UML sequence and state diagrams and from reverse engineered Java source code. However, variation was observed between the XMI representations generated by different software design tools, limiting the ability of the tool to process XMI from all sources. Furthermore, it was noted that subtle differences between UML design representations might have a marked effect on the quality of metrics derived.;In conclusion in order to validate the usefulness of these metrics that can be extracted from XMI files it would be useful to follow well-documented design projects throughout the total design and implementation process. Alternatively, the tool might be used to compare metrics from well-matched design implementations. In either case design metrics will only be of true value to software engineers if they can be associated empirically with a validated measure of system quality

    Context constraint integration and validation in dynamic web service compositions

    Get PDF
    System architectures that cross organisational boundaries are usually implemented based on Web service technologies due to their inherent interoperability benets. With increasing exibility requirements, such as on-demand service provision, a dynamic approach to service architecture focussing on composition at runtime is needed. The possibility of technical faults, but also violations of functional and semantic constraints require a comprehensive notion of context that captures composition-relevant aspects. Context-aware techniques are consequently required to support constraint validation for dynamic service composition. We present techniques to respond to problems occurring during the execution of dynamically composed Web services implemented in WS-BPEL. A notion of context { covering physical and contractual faults and violations { is used to safeguard composed service executions dynamically. Our aim is to present an architectural framework from an application-oriented perspective, addressing practical considerations of a technical framework

    Study of fault-tolerant software technology

    Get PDF
    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance

    The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Get PDF
    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described
    corecore