1,099 research outputs found

    ARCHITECTING END-TO-END INFORMATION SERVICES FOR CONTINUOUS STUDENT BEHAVIOUR MANAGEMENT

    Get PDF
    Data capture and use is vital for the continuous improvement of both student learning and behavior management. Previous studies on data use in the education sector have highlighted a number of problems associated with data quality and its subsequent use. These include the accuracy, consistency, completeness, and timeliness of data. Engagement issues with data have centered on the interpretation and application of the knowledge that data can provide. No study to date has investigated the link between IS design and the production of quality data that captures student progression and outcomes in either the learning or behavior management environments. This study reports on the design, development, implementation and evaluation of a novel artefact facilitating quality data for one classroom based education service: behaviour management. This study, using Design Science Research methods, shows that information systems design is a major barrier to teacher adoption and use of classroom based Information Systems

    AN EMERGING THEORY ON THE INTERACTION BETWEEN REQUIREMENTS ENGINEERING AND SYSTEMS ARCHITECTING BASED ON A SUITE OF EXPLORATORY EMPIRICAL STUDIES

    Get PDF
    Requirements Engineering and Systems Architecting are often considered the most important phases of the software development lifecycle. Because of their close proximity in the software development lifecycle, there is a high degree of interaction between these two processes. While such interaction has been recognized and researched in terms of new technology (particularly methods and tools), there is a distinct lack of empirical understanding regarding the scientific properties of this interaction. Furthermore, in Requirements Engineering and Systems Architecting, not only technical but human aspects are considered critical for the success of these processes due to these processes lying at the front-end of the development cycle and therefore being more aligned with real-world issues. Thus, the scientific properties of the interactions between Requirements Engineering and Systems Architecting can be broken down into these two key aspects. For instance, the following example research questions relate to such scientific properties: What is the impact of an existing system’s architecture on requirements decision-making? What kinds of requirements-oriented problems are encountered during architecting? What is the impact of an existing systems architecture on new requirements being elicited? What is the impact of requirements engineering knowledge on systems architecting? There is little in the literature addressing such questions. This thesis explores such issues through a suite of six exploratory empirical studies that were conducted over the last five years. Based on the observations from these studies, an emerging theory is proposed that describes the impact of human and process factors in the interaction between Requirements Engineering and Systems Architecting. The impact of this emerging body of knowledge is deemed to be on the following: technology development for Requirements Engineering and Software Architecting (methods, tools, processes, etc.); hiring and training personnel for Requirements Engineering and Systems Architecture processes in industry; Requirements Engineering and Systems Architecture project planning; curriculum improvement in academia; and future empirical research in Requirements Engineering and Systems Architecting

    Competences of IT Architects

    Get PDF
    The field of architecture in the digital world uses a plethora of terms to refer to different kinds of architects, and recognises a confusing variety of competences that these architects are required to have. Different service providers use different terms for similar architects and even if they use the same term, they may mean something different. This makes it hard for customers to know what competences an architect can be expected to have.\ud \ud This book combines competence profiles of the NGI Platform for IT Professionals, The Open Group Architecture Framework (TOGAF), as well as a number of Dutch IT service providers in a comprehensive framework. Using this framework, the book shows that notwithstanding a large variety in terminology, there is convergence towards a common set of competence profiles. In other words, when looking beyond terminological differences by using the framework, one sees that organizations recognize similar types of architects, and that similar architects in different organisations have similar competence profiles. The framework presented in this book thus provides an instrument to position architecture services as offered by IT service providers and as used by their customers.\ud \ud The framework and the competence profiles presented in this book are the main results of the special interest group “Professionalisation” of the Netherlands Architecture Forum for the Digital World (NAF). Members of this group, as well as students of the universities of Twente and Nijmegen have contributed to the research on which this book is based

    Missing Requirements Information and its Impact on Software Architectures: A Case Study

    Get PDF
    [Context & motivation] In the development of large, software-intensive systems, the system’s requirements are seldom, if ever, concluded upon prior to commencing with systems architecture. Research shows that, in order to manage development and domain complexities, instances of requirements engineering (RE) and systems architecting (SA) processes tend to inter-weave. [Question/problem] However, missing requirements information can cause one to create (or recreate) the needed information during different SA activities. While backtracking in the software development process is known to be costly, the costs associated with missing requirements in the SA process have not been investigated empirically. [Principal ideas/results] We thus conducted a case study where we investigated to what extent requirements or requirements attributes’ information found missing during the SA process and impact of those missing information on SA in terms of effort. The study involved five architecting teams that involve final year undergraduate and graduate students enrolled in the university course on SA, working on architecting a system falls under “banking” domain. Our result shows that, architects did find requirements and requirements attributes’ information missing while architecting. Among requirements information, architects found that, system functionality information, constraints information and system interaction (users/systems) information are missing in requirements at higher percentages. Within requirements’ attributes, architects found requirements priority, dependency and rationale missing at higher percentages. It is also found that, out of total time spent on architecting the system, effort given to recreate missing requirements information is higher for group3 (21.5%), group1 (18%), and group2 (17%) other than group4 (12.37%) and group5(10.18%). [Contribution] The anticipated benefits of the findings are, it can motivate researchers to venture into other areas of software engineering (such as coding, testing, maintenance, etc.) from the view point of missing requirements information and its impact on those areas. This knowledge could help software practitioners to decide what kind of information need to take care of, during RE process, that could possibly ease SA process and later development phases. To the best of my knowledge, this is the first work which focuses on, to what extent requirements and requirements’ attributes information found missing during SA; characteristics and impact of those requirements missing information on SA process in terms of effort

    8th SC@RUG 2011 proceedings:Student Colloquium 2010-2011

    Get PDF
    corecore