3,643 research outputs found

    DNA methylation at tobacco telomeric sequences

    Get PDF
    Majerová et al. (Plant Mol Biol, 2011) have recently reported that a considerable fraction of cytosines at tobacco telomeres is methylated. Although the data presented in this report indicate that tobacco telomeric sequences undergo certain levels of DNA methylation, it is not clear whether the methylated sequences are at telomeres, at internal chromosomal loci or at both

    Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing.</p> <p>Results</p> <p>This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in <it>Arabidopsis thaliana </it>that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the <it>Arabidopsis thaliana </it>genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in <it>Arabidopsis thaliana </it>have alignments to intergenic regions in <it>Arabidopsis lyrata</it>, consistent with either <it>de novo </it>origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different <it>Arabidopsis thaliana </it>accessions are further identified as accession-specific genes, most likely of recent origin in <it>Arabidopsis thaliana</it>. Putative <it>de novo </it>origination for two of the <it>Arabidopsis thaliana</it>-only genes is identified via additional sequencing across accessions of <it>Arabidopsis thaliana </it>and closely related sister species lineages. We demonstrate that lineage-specific genes have high tissue specificity and low expression levels across multiple tissues and developmental stages. Finally, stress responsiveness is identified as a distinct feature of Brassicaceae-specific genes; where these LSGs are enriched for genes responsive to a wide range of abiotic stresses.</p> <p>Conclusion</p> <p>Improving our understanding of the origins of lineage-specific genes is key to gaining insights regarding how novel genes can arise and acquire functionality in different lineages. This study comprehensively identifies all of the Brassicaceae-specific genes in <it>Arabidopsis thaliana </it>and identifies how the majority of such lineage-specific genes have arisen. The analysis allows the relative importance (and prevalence) of different evolutionary routes to the genesis of novel ORFs within lineages to be assessed. Insights regarding the functional roles of lineage-specific genes are further advanced through identification of enrichment for stress responsiveness in lineage-specific genes, highlighting their likely importance for environmental adaptation strategies.</p

    Evidence for Directed Evolution of Larger Size Motif in Arabidopsis thaliana Genome

    Get PDF
    Transcription control of gene expression depends on a variety of interactions mediated by the core promoter region, sequence specific DNA-binding proteins, and their cognate promoter elements. The prominent group of cis acting elements in plants contains an ACGT core. The cis element with this core has been shown to be involved in abscisic acid, salicylic acid, and light response. In this study, genome-wide comparison of the frequency of occurrence of two ACGT elements without any spacers as well as those separated by spacers of different length was carried out. In the first step, the frequency of occurrence of the cis element sequences across the whole genome was determined by using BLAST tool. In another approach the spacer sequence was randomized before making the query. As expected, the sequence ACGTACGT had maximum occurrence in Arabidopsis thaliana genome. As we increased the spacer length, one nucleotide at a time, the probability of its occurrence in genome decreased. This trend continued until an unexpectedly sharp rise in frequency of (ACGT)N25(ACGT). The observation of higher probability of bigger size motif suggests its directed evolution in Arabidopsis thaliana genome

    A New Algorithm for “the LCS problem” with Application in Compressing Genome Resequencing Data

    Get PDF
    Background: The longest common subsequence (LCS) problem is a classical problem in computer science, and forms the basis of the current best-performing reference-based compression schemes for genome resequencing data. Methods: First, we present a new algorithm for the LCS problem. Using the generalized suffix tree, we identify the common substrings shared between the two input sequences. Using the maximal common substrings, we construct a directed acyclic graph (DAG), based on which we determine the LCS as the longest path in the DAG. Then, we introduce an LCS-motivated reference-based compression scheme using the components of the LCS, rather than the LCS itself. Results: Our basic scheme compressed the Homo sapiens genome (with an original size of 3,080,436,051 bytes) to 15,460,478 bytes. An improvement on the basic method further reduced this to 8,556,708 bytes, or an overall compression ratio of 360. This can be compared to the previous state-of-the-art compression ratios of 157 (Wang and Zhang, 2011) and 171 (Pinho, Pratas, and Garcia, 2011). Conclusion: We propose a new algorithm to address the longest common subsequence problem. Motivated by our LCS algorithm, we introduce a new reference-based compression scheme for genome resequencing data. Comparative results against state-of-the-art reference-based compression algorithms demonstrate the performance of the proposed method

    Compressing Genome Resequencing Data

    Get PDF
    Recent improvements in high-throughput next generation sequencing (NGS) technologies have led to an exponential increase in the number, size and diversity of available complete genome sequences. This poses major problems in storage, transmission and analysis of such genomic sequence data. Thus, a substantial effort has been made to develop effective data compression techniques to reduce the storage requirements, improve the transmission speed, and analyze the compressed sequences for possible information about genomic structure or determine relationships between genomes from multiple organisms.;In this thesis, we study the problem of lossless compression of genome resequencing data using a reference-based approach. The thesis is divided in two major parts. In the first part, we perform a detailed empirical analysis of a recently proposed compression scheme called MLCX (Maximal Longest Common Substring/Subsequence). This led to a novel decomposition technique that resulted in an enhanced compression using MLCX. In the second part, we propose SMLCX, a new reference-based lossless compression scheme that builds on the MLCX. This scheme performs compression by encoding common substrings based on a sorted order, which significantly improved compression performance over the original MLCX method. Using SMLCX, we compressed the Homo sapiens genome with original size of 3,080,436,051 bytes to 6,332,488 bytes, for an overall compression ratio of 486. This can be compared to the performance of current state-of-the-art compression methods, with compression ratios of 157 (Wang et.al, Nucleic Acid Research, 2011), 171 (Pinho et.al, Nucleic Acid Research, 2011) and 360 (Beal et.al, BMC Genomics, 2016)
    corecore