43 research outputs found

    Emotion recognition based on the energy distribution of plosive syllables

    Get PDF
    We usually encounter two problems during speech emotion recognition (SER): expression and perception problems, which vary considerably between speakers, languages, and sentence pronunciation. In fact, finding an optimal system that characterizes the emotions overcoming all these differences is a promising prospect. In this perspective, we considered two emotional databases: Moroccan Arabic dialect emotional database (MADED), and Ryerson audio-visual database on emotional speech and song (RAVDESS) which present notable differences in terms of type (natural/acted), and language (Arabic/English). We proposed a detection process based on 27 acoustic features extracted from consonant-vowel (CV) syllabic units: \ba, \du, \ki, \ta common to both databases. We tested two classification strategies: multiclass (all emotions combined: joy, sadness, neutral, anger) and binary (neutral vs. others, positive emotions (joy) vs. negative emotions (sadness, anger), sadness vs. anger). These strategies were tested three times: i) on MADED, ii) on RAVDESS, iii) on MADED and RAVDESS. The proposed method gave better recognition accuracy in the case of binary classification. The rates reach an average of 78% for the multi-class classification, 100% for neutral vs. other cases, 100% for the negative emotions (i.e. anger vs. sadness), and 96% for the positive vs. negative emotions

    Emotion recognition from syllabic units using k-nearest-neighbor classification and energy distribution

    Get PDF
    In this article, we present an automatic technique for recognizing emotional states from speech signals. The main focus of this paper is to present an efficient and reduced set of acoustic features that allows us to recognize the four basic human emotions (anger, sadness, joy, and neutral). The proposed features vector is composed by twenty-eight measurements corresponding to standard acoustic features such as formants, fundamental frequency (obtained by Praat software) as well as introducing new features based on the calculation of the energies in some specific frequency bands and their distributions (thanks to MATLAB codes). The extracted measurements are obtained from syllabic units’ consonant/vowel (CV) derived from Moroccan Arabic dialect emotional database (MADED) corpus. Thereafter, the data which has been collected is then trained by a k-nearest-neighbor (KNN) classifier to perform the automated recognition phase. The results reach 64.65% in the multi-class classification and 94.95% for classification between positive and negative emotions

    Analysis of momentous fragmentary formants in Talaqi-like neoteric assessment of Quran recitation using MFCC miniature features of Quranic syllables

    Get PDF
    The use of technological speech recognition systems with a variety of approaches and techniques has grown rapidly in a variety of human-machine interaction applications. Further to this, a computerized assessment system to identify errors in reading the Qur’an can be developed to practice the advantages of technology that exist today. Based on Quranic syllable utterances, which contain Tajweed rules that generally consist of Makhraj (articulation process), Sifaat (letter features or pronunciation) and Harakat (pronunciation extension), this paper attempts to present the technological capabilities in realizing Quranic recitation assessment. The transformation of the digital signal of the Quranic voice with the identification of reading errors (based on the Law of Tajweed) is the main focus of this paper. This involves many stages in the process related to the representation of Quranic syllable-based Recitation Speech Signal (QRSS), feature extraction, non-phonetic transcription Quranic Recitation Acoustic Model (QRAM), and threshold classification processes. MFCC-Formants are used in a miniature state that are hybridized with three bands in representing QRSS combined vowels and consonants. A human-guided threshold classification approach is used to assess recitation based on Quranic syllables and threshold classification performance for the low, medium, and high band groups with performances of 87.27%, 86.86%and 86.33%, respectively

    Fractal based speech recognition and synthesis

    Get PDF
    Transmitting a linguistic message is most often the primary purpose of speech com­munication and the recognition of this message by machine that would be most useful. This research consists of two major parts. The first part presents a novel and promis­ing approach for estimating the degree of recognition of speech phonemes and makes use of a new set of features based fractals. The main methods of computing the frac­tal dimension of speech signals are reviewed and a new speaker-independent speech recognition system developed at De Montfort University is described in detail. Fi­nally, a Least Square Method as well as a novel Neural Network algorithm is employed to derive the recognition performance of the speech data. The second part of this work studies the synthesis of speech words, which is based mainly on the fractal dimension to create natural sounding speech. The work shows that by careful use of the fractal dimension together with the phase of the speech signal to ensure consistent intonation contours, natural-sounding speech synthesis is achievable with word level speech. In order to extend the flexibility of this framework, we focused on the filtering and the compression of the phase to maintain and produce natural sounding speech. A ‘naturalness level’ is achieved as a result of the fractal characteristic used in the synthesis process. Finally, a novel speech synthesis system based on fractals developed at De Montfort University is discussed. Throughout our research simulation experiments were performed on continuous speech data available from the Texas Instrument Massachusetts institute of technology ( TIMIT) database, which is designed to provide the speech research community with a standarised corpus for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition system

    The perceptual flow of phonetic feature processing

    Get PDF
    corecore