71 research outputs found

    Spell-checking in Spanish: the case of diacritic accents

    Get PDF
    This article presents the problem of diacritic restoration (or diacritization) in the context of spell-checking, with the focus on an orthographically rich language such as Spanish. We argue that despite the large volume of work published on the topic of diacritization, currently available spell-checking tools have still not found a proper solution to the problem in those cases where both forms of a word are listed in the checker’s dictionary. This is the case, for instance, when a word form exists with and without diacritics, such as continuo ‘continuous’ and continuó ‘he/she/it continued’, or when different diacritics make other word distinctions, as in continúo ‘I continue’. We propose a very simple solution based on a word bigram model derived from correctly typed Spanish texts and evaluate the ability of this model to restore diacritics in artificial as well as real errors. The case of diacritics is only meant to be an example of the possible applications for this idea, yet we believe that the same method could be applied to other kinds of orthographic or even grammatical errors. Moreover, given that no explicit linguistic knowledge is required, the proposed model can be used with other languages provided that a large normative corpus is available.Peer ReviewedPostprint (author’s final draft

    Efficient Convolutional Neural Networks for Diacritic Restoration

    Full text link
    Diacritic restoration has gained importance with the growing need for machines to understand written texts. The task is typically modeled as a sequence labeling problem and currently Bidirectional Long Short Term Memory (BiLSTM) models provide state-of-the-art results. Recently, Bai et al. (2018) show the advantages of Temporal Convolutional Neural Networks (TCN) over Recurrent Neural Networks (RNN) for sequence modeling in terms of performance and computational resources. As diacritic restoration benefits from both previous as well as subsequent timesteps, we further apply and evaluate a variant of TCN, Acausal TCN (A-TCN), which incorporates context from both directions (previous and future) rather than strictly incorporating previous context as in the case of TCN. A-TCN yields significant improvement over TCN for diacritization in three different languages: Arabic, Yoruba, and Vietnamese. Furthermore, A-TCN and BiLSTM have comparable performance, making A-TCN an efficient alternative over BiLSTM since convolutions can be trained in parallel. A-TCN is significantly faster than BiLSTM at inference time (270%-334% improvement in the amount of text diacritized per minute).Comment: accepted in EMNLP 201

    An automatically built named entity lexicon for Arabic

    Get PDF
    We have successfully adapted and extended the automatic Multilingual, Interoperable Named Entity Lexicon approach to Arabic, using Arabic WordNet (AWN) and Arabic Wikipedia (AWK). First, we extract AWN’s instantiable nouns and identify the corresponding categories and hyponym subcategories in AWK. Then, we exploit Wikipedia inter-lingual links to locate correspondences between articles in ten different languages in order to identify Named Entities (NEs). We apply keyword search on AWK abstracts to provide for Arabic articles that do not have a correspondence in any of the other languages. In addition, we perform a post-processing step to fetch further NEs from AWK not reachable through AWN. Finally, we investigate diacritization using matching with geonames databases, MADA-TOKAN tools and different heuristics for restoring vowel marks of Arabic NEs. Using this methodology, we have extracted approximately 45,000 Arabic NEs and built, to the best of our knowledge, the largest, most mature and well-structured Arabic NE lexical resource to date. We have stored and organised this lexicon following the Lexical Markup Framework (LMF) ISO standard. We conduct a quantitative and qualitative evaluation of the lexicon against a manually annotated gold standard and achieve precision scores from 95.83% (with 66.13% recall) to 99.31% (with 61.45% recall) according to different values of a threshold

    An automatic diacritization algorithm for undiacritized Arabic text

    Get PDF
    Modern Standard Arabic (MSA) is used today in most written and some spoken media. It is, however, not the native dialect of any country. Recently, the rate of the written dialectal Arabic text increased dramatically. Most of these texts have been written in the Egyptian dialectal, as it is considered the most widely used dialect and understandable throughout the Middle East. Like other Semitic languages, in written Arabic, short vowels are not written, but are represented by diacritic marks. Nonetheless, these marks are not used in most of the modern Arabic texts (for example books and newspapers). The absence of diacritic marks creates a huge ambiguity, as the un-diacritized word may correspond to more than one correct diacritization (vowelization) form. Hence, the aim of this research is to reduce the ambiguity of the absences of diacritic marks using hybrid algorithm with significantly higher accuracy than the state-of-the-art systems for MSA. Moreover, this research is to implement and evaluate the accuracy of the algorithm for dialectal Arabic text. The design of the proposed algorithm based on two main techniques as follows: statistical n-gram along with maximum likelihood estimation and morphological analyzer. Merging the word, morpheme, and letter levels with their sub-models together into one platform in order to improve the automatic diacritization accuracy is the proposition of this research. Moreover, by utilizing the feature of the case ending diacritization, which is ignoring the diacritic mark on the last letter of the word, shows a significant error improvement. The reason for this remarkable improvement is that the Arabic language prohibits adding diacritic marks over some letters. The hybrid algorithm demonstrated a good performance of 97.9% when applied to MSA corpora (Tashkeela), 97.1% when applied on LDC’s Arabic Treebank-Part 3 v1.0 and 91.8% when applied to Egyptian dialectal corpus (CallHome). The main contribution of this research is the hybrid algorithm for automatic diacritization of undiacritized MSA text and dialectal Arabic text. The proposed algorithm applied and evaluated on Egyptian colloquial dialect, the most widely dialect understood and used throughout the Arab world, which is considered as first time based on the literature review
    • …
    corecore