1,523 research outputs found

    Unsupervised learning of Arabic non-concatenative morphology

    Get PDF
    Unsupervised approaches to learning the morphology of a language play an important role in computer processing of language from a practical and theoretical perspective, due their minimal reliance on manually produced linguistic resources and human annotation. Such approaches have been widely researched for the problem of concatenative affixation, but less attention has been paid to the intercalated (non-concatenative) morphology exhibited by Arabic and other Semitic languages. The aim of this research is to learn the root and pattern morphology of Arabic, with accuracy comparable to manually built morphological analysis systems. The approach is kept free from human supervision or manual parameter settings, assuming only that roots and patterns intertwine to form a word. Promising results were obtained by applying a technique adapted from previous work in concatenative morphology learning, which uses machine learning to determine relatedness between words. The output, with probabilistic relatedness values between words, was then used to rank all possible roots and patterns to form a lexicon. Analysis using trilateral roots resulted in correct root identification accuracy of approximately 86% for inflected words. Although the machine learning-based approach is effective, it is conceptually complex. So an alternative, simpler and computationally efficient approach was then devised to obtain morpheme scores based on comparative counts of roots and patterns. In this approach, root and pattern scores are defined in terms of each other in a mutually recursive relationship, converging to an optimized morpheme ranking. This technique gives slightly better accuracy while being conceptually simpler and more efficient. The approach, after further enhancements, was evaluated on a version of the Quranic Arabic Corpus, attaining a final accuracy of approximately 93%. A comparative evaluation shows this to be superior to two existing, well used manually built Arabic stemmers, thus demonstrating the practical feasibility of unsupervised learning of non-concatenative morphology

    Anaphora resolution for Arabic machine translation :a case study of nafs

    Get PDF
    PhD ThesisIn the age of the internet, email, and social media there is an increasing need for processing online information, for example, to support education and business. This has led to the rapid development of natural language processing technologies such as computational linguistics, information retrieval, and data mining. As a branch of computational linguistics, anaphora resolution has attracted much interest. This is reflected in the large number of papers on the topic published in journals such as Computational Linguistics. Mitkov (2002) and Ji et al. (2005) have argued that the overall quality of anaphora resolution systems remains low, despite practical advances in the area, and that major challenges include dealing with real-world knowledge and accurate parsing. This thesis investigates the following research question: can an algorithm be found for the resolution of the anaphor nafs in Arabic text which is accurate to at least 90%, scales linearly with text size, and requires a minimum of knowledge resources? A resolution algorithm intended to satisfy these criteria is proposed. Testing on a corpus of contemporary Arabic shows that it does indeed satisfy the criteria.Egyptian Government

    Frequency vs. Association for Constraint Selection in Usage-Based Construction Grammar

    Get PDF
    A usage-based Construction Grammar (CxG) posits that slot-constraints generalize from common exemplar constructions. But what is the best model of constraint generalization? This paper evaluates competing frequency-based and association-based models across eight languages using a metric derived from the Minimum Description Length paradigm. The experiments show that association-based models produce better generalizations across all languages by a significant margin

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic
    • …
    corecore