194,561 research outputs found

    Applications of next-generation sequencing technologies and computational tools in molecular evolution and aquatic animals conservation studies : a short review

    Get PDF
    Aquatic ecosystems that form major biodiversity hotspots are critically threatened due to environmental and anthropogenic stressors. We believe that, in this genomic era, computational methods can be applied to promote aquatic biodiversity conservation by addressing questions related to the evolutionary history of aquatic organisms at the molecular level. However, huge amounts of genomics data generated can only be discerned through the use of bioinformatics. Here, we examine the applications of next-generation sequencing technologies and bioinformatics tools to study the molecular evolution of aquatic animals and discuss the current challenges and future perspectives of using bioinformatics toward aquatic animal conservation efforts

    Large aquatic animals

    Get PDF
    The following paper on the existence of large animals, (probably fresh water seals) in the upland lakes of Tasmania, prepared by C. Gould, Esq., F.G.S., was, in Mr. Gould's absence, read at the last meeting of the Royal Society: — I wish to lay before the Society a statement of facts, which is full of interest and surprise, and which will show, if corroborated by further investigations, that the existence of rare, perhaps undescribed, animals may be generally unknown, and entirely so to science, for long periods after the occupation of a country

    Optimal Strouhal number for swimming animals

    Full text link
    To evaluate the swimming performances of aquatic animals, an important dimensionless quantity is the Strouhal number, St = fA/U, with f the tail-beat frequency, A the peak-to-peak tail amplitude, and U the swimming velocity. Experiments with flapping foils have exhibited maximum propulsive efficiency in the interval 0.25 < St < 0.35 and it has been argued that animals likely evolved to swim in the same narrow interval. Using Lighthill's elongated-body theory to address undulatory propulsion, it is demonstrated here that the optimal Strouhal number increases from 0.15 to 0.8 for animals spanning from the largest cetaceans to the smallest tadpoles. To assess the validity of this model, the swimming kinematics of 53 different species of aquatic animals have been compiled from the literature and it shows that their Strouhal numbers are consistently near the predicted optimum.Comment: 21 pages, 6 figure

    Pain in Aquatic Animals

    Get PDF
    Recent developments in the study of pain in animals have demonstrated the potential for pain perception in a variety of wholly aquatic species such as molluscs, crustaceans and fish. This allows us to gain insight into how the ecological pressures and differential life history of living in a watery medium can yield novel data that inform the comparative physiology and evolution of pain. Nociception is the simple detection of potentially painful stimuli usually accompanied by a reflex withdrawal response, and nociceptors have been found in aquatic invertebrates such as the sea slug Aplysia. It would seem adaptive to have a warning system that allows animals to avoid life-threatening injury, yet debate does still continue over the capacity for non-mammalian species to experience the discomfort or suffering that is a key component of pain rather than a nociceptive reflex. Contemporary studies over the last 10 years have demonstrated that bony fish possess nociceptors that are similar to those in mammals; that they demonstrate pain-related changes in physiology and behaviour that are reduced by painkillers; that they exhibit higher brain activity when painfully stimulated; and that pain is more important than showing fear or anti-predator behaviour in bony fish. The neurophysiological basis of nociception or pain in fish is demonstrably similar to that in mammals. Pain perception in invertebrates is more controversial as they lack the vertebrate brain, yet recent research evidence confirms that there are behavioural changes in response to potentially painful events. This review will assess the field of pain perception in aquatic species, focusing on fish and selected invertebrate groups to interpret how research findings can inform our understanding of the physiology and evolution of pain. Further, if we accept these animals may be capable of experiencing the negative experience of pain, then the wider implications of human use of these animals should be considered

    Self-recruiting species (SRS) from farmer managed aquatic systems: are they important to the livelihoods of rural communities?

    Get PDF
    Why are SRS important? The answer is to be found in this well-structured survey under: SRS as food source; SRS as additional source of cash income; Role of SRS in social capital. An analysis of the threats to SRS and the potential management options for farmer managed aquatic systems are also available in this survey along with the following definition of SRS: SRS are defined as aquatic animals that can be harvested from farmer managed aquatic systems without regular stocking. (PDF contains 4 pages

    Histopathology of Aquatic Animals

    Get PDF
    Histopathological studies of aquatic animals refer to the microscopic examination of tissues and organs in order to detect deviations from the expected microscopic or macroscopic structure. Information obtained from the study of histomorphological lesions in aquatic animals can be a useful addition when determining the general state of health of aquatic animals, especially if chronic stressors and/or pathogens are present. Compared to mammals, postmortem autolysis progresses very rapidly in most aquatic organisms. This fact makes histopathological examination quite complex and demanding, not only in a histotechnical sense. A prerequisite for a successful study is the baseline knowledge of physiological processes and histological architecture of the studied species. Therefore, the aim of this Special Issue is to contribute to the current state of knowledge on the histopathology of aquatic animals and to provide a professional and encyclopedic tool for biologists and veterinarians

    Opportunities for Public Aquariums to Increase the Sustainability of the Aquatic Animal Trade

    Get PDF
    The global aquatic pet trade encompasses a wide diversity of freshwater and marine organisms. While relying on a continual supply of healthy, vibrant aquatic animals, few sustainability initiatives exist within this sector. Public aquariums overlap this industry by acquiring many of the same species through the same sources. End users are also similar, as many aquarium visitors are home aquarists. Here we posit that this overlap with the pet trade gives aquariums significant opportunity to increase the sustainability of the trade in aquarium fishes and invertebrates. Improving the sustainability ethos and practices of the aquatic pet trade can carry a conservation benefit in terms of less waste, and protection of intact functioning ecosystems, at the same time as maintaining its economic and educational benefits and impacts. The relationship would also move forward the goal of public aquariums to advance aquatic conservation in a broad sense. For example, many public aquariums in North America have been instrumental in working with the seafood industry to enact positive change toward increased sustainability. The actions include being good consumers themselves, providing technical knowledge, and providing educational and outreach opportunities. These same opportunities exist for public aquariums to partner with the ornamental fish trade, which will serve to improve business, create new, more ethical and more dependable sources of aquatic animals for public aquariums, and perhaps most important, possibly transform the home aquarium industry from a threat, into a positive force for aquatic conservation. Zoo Biol. 32:1-12, 2013. © 2012 Wiley Periodicals, Inc

    Bacteriology of select aquatic hosts utilized in lunar sample exposure studies Final report

    Get PDF
    Procedures and immunofluorescent techniques for screening Apollo aquatic test animals for bacterial pathogens after lunar sample exposur
    • …