7 research outputs found

    Exploiting the multiscale synergy among ocean variables : application to the improvement of remote sensing salinity maps

    Get PDF
    Les imatges de teledetecció de la superfície oceànica proporcionen una vista sinòptica de la complexa geometria de la circulació oceànica, dominada per la variabilitat de mesoescala. Estructures com filaments i vòrtex són presents en els diferents escalars advectats pel flux oceànic. L’origen més probable d’aquestes estructures és el caràcter turbulent dels corrents, aquestes estructures són persistents amb el temps i compatibles amb la dinàmica mesoscalar oceànica. A escales espacials de quilòmetres o més, la turbulència és principalment 2D, i una complexa geometria, plena de filaments i remolins de mides diferents, emergeix en les imatges superficials de teledetecció de concentració de clorofil·la-a, salinitat superficial, així com en altres escalars més coneguts com són la temperatura superficial i la topografia dinàmica. L’objectiu d’aquesta tesi és explorar i aplicar metodologies de mapatge que permeten millorar la qualitat de mapes de teledetecció oceànica en general, i en particular de la salinitat superficial del mar (SSS). Les diferents metodologies emprades en aquesta tesi han estat aplicades amb l’objectiu específic de millorar els mapes de teledetecció de salinitat superficial del mar proveïts per la missió SMOS de l’Agència Espaial Europea. SMOS és el primer satèl·lit capaç de mesurar la humitat del sol i salinitat oceànica des de l’espai a escala global. La primera part d’aquesta tesi se centra a analitzar les característiques dels productes de nivell 2 (L2) de salinitat de SMOS i produir mapes de nivell 3 (L3) de salinitat utilitzant aproximacions clàssiques: millora del filtratge, mitjana ponderada i Interpolació Òptima. En el curs de la nostra recerca obtenim un conjunt de recomanacions de com processar les dades de SMOS començant des del nivell L2. Aquesta tesi també presenta una nova tècnica de fusió de dades que permet explotar les estructures turbulentes comunes entre diferents variables oceàniques, representant un pas endavant en la cadena de processat per generar mapes de nivell 4 (L4). Aquesta tècnica de fusió es basa teòricament en les propietats geomètriques dels traçadors advectats per la dinàmica oceànica (Turiel et al., 2005a). Degut a l’efecte de forta cissalla als fluits turbulents, l’estructura espacial d’un traçador oceànic hereta algunes propietats del flux subjacent, i en particular el seu arranjament geomètric. Com a conseqüència, les diferents variables oceàniques mostren propietats d’escala similars a la cascada d’energia turbulenta (Seuront and Schmitt, 2005; Nieves et al., 2007; Nieves and Turiel, 2009; Isern-Fontanet et al., 2007). El mètode de fusió agafa un senyal de menor qualitat (afectat per soroll, forats de dades i/o de resolució més baixa) i en millora la seva qualitat. A més d’això, el mètode de fusió és capaç d’extrapolar les dades de forma geofísicament coherent. Aquesta millora del senyal s’aconsegueix utilitzant una altra variable oceànica adquirida amb major qualitat, cobertura espacial més gran i/o millor resolució. Un punt clau d’aquesta aproximació és la suposició de l’existència d’una estructura multifractal de les imatges de teledetecció oceànica (Lovejoy et al., 2001b), i que les línies de singularitat de les diferents variables de l’oceà coincideixen. Sota aquestes premises, els gradients de les dues variables a fusionar estan relacionats per una matriu suau. Com a primera i simple aproximació, s’assumeix que aquesta matriu és proporcional a la identitat; això porta a un esquema de regressió lineal local. Aquesta tesi mostra que aquesta aproximació senzilla permet reduir l’error i millorar la cobertura del producte de nivell 4 resultant. D’altra banda, s’obté informació sobre la relació estadística entre les dues variables fusionades, ja que la dependència funcional entre elles es determina per cada punt de la imatge.Remote sensing imagery of the ocean surface provides a synoptic view of the complex geometry of ocean circulation, which is dominated by mesoscale variability. The signature of filaments and vortices is present in different ocean scalars advected by the oceanic flow. The most probable origin of the observed structures is the turbulent character of ocean currents, and those signatures are persistent over time scales compatible with ocean mesoscale dynamics. At spatial scales of kilometers or more, turbulence is mainly 2D, and a complex geometry, full of filaments and eddies of different sizes, emerges in remote sensing images of surface chlorophyll-a concentration and surface salinity, as well as in other scalars acquired with higher quality such as surface temperature and absolute dynamic topography. The aim of this thesis is to explore and apply mapping methodologies to improve the quality of remote sensing maps in general, but focusing in the case of remotely sensed sea surface salinity (SSS) data. The different methodologies studied in this thesis have been applied with the specific goal of improving surface salinity maps generated from data acquired by the European Space Agency's mission SMOS, the first satellite able to measure soil moisture and ocean salinity from space at a global scale. The first part of this thesis will introduce the characteristics of the operational SMOS Level 2 (L2) SSS products and the classical approaches to produce the best possible SSS maps at Level 3 (L3), namely data filtering, weighted average and Optimal Interpolation. In the course of our research we will obtain a set of recommendations about how to process SMOS data starting from L2 data. A fusion technique designed to exploit the common turbulent signatures between different ocean variables is also explored in this thesis, in what represents a step forward from L3 to Level 4 (L4). This fusion technique is theoretically based on the geometrical properties of advected tracers. Due to the effect of the strong shear in turbulent flows, the spatial structure of tracers inherit some properties of the underlying flow and, in particular, its geometrical arrangement. As a consequence, different ocean variables exhibit scaling properties, similar to the turbulent energy cascade. The fusion method takes a signal affected by noise, data gaps and/or low resolution, and improves it in a geophysically meaningful way. This signal improvement is achieved by using an appropriate data, which is another ocean variable acquired with higher quality, greater spatial coverage and/or finer resolution. A key point in this approach is the assumption of the existence of a multifractal structure in ocean images, and that singularity lines of the different ocean variables coincide. Under these assumptions, the horizontal gradients of both variables, signal and template, can be related by a smooth matrix. The first, simplest approach to exploit such an hypothesis assumes that the relating matrix is proportional to the identity, leading to a local regression scheme. As shown in the thesis, this simple approach allows reducing the error and improving the coverage of the resulting Level 4 product; Moreover, information about the statistical relationship between the two fields is obtained since the functional dependence between signal and template is determined at each point

    Half a century of satellite remote sensing of sea-surface temperature

    Get PDF
    Sea-surface temperature (SST) was one of the first ocean variables to be studied from earth observation satellites. Pioneering images from infrared scanning radiometers revealed the complexity of the surface temperature fields, but these were derived from radiance measurements at orbital heights and included the effects of the intervening atmosphere. Corrections for the effects of the atmosphere to make quantitative estimates of the SST became possible when radiometers with multiple infrared channels were deployed in 1979. At the same time, imaging microwave radiometers with SST capabilities were also flown. Since then, SST has been derived from infrared and microwave radiometers on polar orbiting satellites and from infrared radiometers on geostationary spacecraft. As the performances of satellite radiometers and SST retrieval algorithms improved, accurate, global, high resolution, frequently sampled SST fields became fundamental to many research and operational activities. Here we provide an overview of the physics of the derivation of SST and the history of the development of satellite instruments over half a century. As demonstrated accuracies increased, they stimulated scientific research into the oceans, the coupled ocean-atmosphere system and the climate. We provide brief overviews of the development of some applications, including the feasibility of generating Climate Data Records. We summarize the important role of the Group for High Resolution SST (GHRSST) in providing a forum for scientists and operational practitioners to discuss problems and results, and to help coordinate activities world-wide, including alignment of data formatting and protocols and research. The challenges of burgeoning data volumes, data distribution and analysis have benefited from simultaneous progress in computing power, high capacity storage, and communications over the Internet, so we summarize the development and current capabilities of data archives. We conclude with an outlook of developments anticipated in the next decade or so

    [Arctic] Greenland ice sheet [in “State of the Climate in 2012”]

    Get PDF
    Melting at the surface of the Greenland Ice Sheet set new records for extent and melt index (i.e., the number of days on which melting occurred multiplied by the area where melting was detected) for the period 1979–2012, according to passive microwave observations (e.g., Tedesco 2007, 2009; Mote and Anderson 1995). Melt extent reached ~97% of the ice sheet surface during a rare, ice-sheet-wide event on 11–12 July (Fig. 5.13a; Nghiem et al. 2012). This was almost four times greater than the average melt extent for 1981–2010. The 2012 standardized melting index (SMI, defined as the melting index minus its average and divided by its standard deviation) was +2.4, almost twice the previous record of about +1.3 set in 2010

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
    corecore