3,722 research outputs found

    The variance of a poisson process of domains

    Get PDF
    A familiar relation links the densities that result for the intersection of a convex body and straight lines under uniform isotropic randomness with those that result under weighted randomness. An extension of this relation to the intersection of more general domains is utilized to obtain the variance of the n-dimensional measure of the intersection of two bodies under uniform isotropic randomness. The formula for the variance contains the point-pair distance distributions for the two domains — or the closely related geometric reduction factors. The result is applied to derive the variance of the intersection of a Boolean scheme, i.e. a stationary, isotropic Poisson process of domains, with a fixed sampling region

    Constant-Factor Approximation for TSP with Disks

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and present the first constant-ratio approximation for disks in the plane: Given a set of nn disks in the plane, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in time that is polynomial in nn. Our result is the first constant-ratio approximation for a class of planar convex bodies of arbitrary size and arbitrary intersections. In order to achieve a O(1)O(1)-approximation, we reduce the traveling salesman problem with disks, up to constant factors, to a minimum weight hitting set problem in a geometric hypergraph. The connection between TSPN and hitting sets in geometric hypergraphs, established here, is likely to have future applications.Comment: 14 pages, 3 figure
    • …
    corecore