529 research outputs found

    Finitary and Infinitary Mathematics, the Possibility of Possibilities and the Definition of Probabilities

    Get PDF
    Some relations between physics and finitary and infinitary mathematics are explored in the context of a many-minds interpretation of quantum theory. The analogy between mathematical ``existence'' and physical ``existence'' is considered from the point of view of philosophical idealism. Some of the ways in which infinitary mathematics arises in modern mathematical physics are discussed. Empirical science has led to the mathematics of quantum theory. This in turn can be taken to suggest a picture of reality involving possible minds and the physical laws which determine their probabilities. In this picture, finitary and infinitary mathematics play separate roles. It is argued that mind, language, and finitary mathematics have similar prerequisites, in that each depends on the possibility of possibilities. The infinite, on the other hand, can be described but never experienced, and yet it seems that sets of possibilities and the physical laws which define their probabilities can be described most simply in terms of infinitary mathematics.Comment: 21 pages, plain TeX, related papers from http://www.poco.phy.cam.ac.uk/~mjd101

    On Hilberg's Law and Its Links with Guiraud's Law

    Full text link
    Hilberg (1990) supposed that finite-order excess entropy of a random human text is proportional to the square root of the text length. Assuming that Hilberg's hypothesis is true, we derive Guiraud's law, which states that the number of word types in a text is greater than proportional to the square root of the text length. Our derivation is based on some mathematical conjecture in coding theory and on several experiments suggesting that words can be defined approximately as the nonterminals of the shortest context-free grammar for the text. Such operational definition of words can be applied even to texts deprived of spaces, which do not allow for Mandelbrot's ``intermittent silence'' explanation of Zipf's and Guiraud's laws. In contrast to Mandelbrot's, our model assumes some probabilistic long-memory effects in human narration and might be capable of explaining Menzerath's law.Comment: To appear in Journal of Quantitative Linguistic

    Infinitary Classical Logic: Recursive Equations and Interactive Semantics

    Full text link
    In this paper, we present an interactive semantics for derivations in an infinitary extension of classical logic. The formulas of our language are possibly infinitary trees labeled by propositional variables and logical connectives. We show that in our setting every recursive formula equation has a unique solution. As for derivations, we use an infinitary variant of Tait-calculus to derive sequents. The interactive semantics for derivations that we introduce in this article is presented as a debate (interaction tree) between a test > (derivation candidate, Proponent) and an environment << not S >> (negation of a sequent, Opponent). We show a completeness theorem for derivations that we call interactive completeness theorem: the interaction between > (test) and > (environment) does not produce errors (i.e., Proponent wins) just in case > comes from a syntactical derivation of >.Comment: In Proceedings CL&C 2014, arXiv:1409.259

    Stone duality above dimension zero: Axiomatising the algebraic theory of C(X)

    Get PDF
    It has been known since the work of Duskin and Pelletier four decades ago that KH^op, the category opposite to compact Hausdorff spaces and continuous maps, is monadic over the category of sets. It follows that KH^op is equivalent to a possibly infinitary variety of algebras V in the sense of Slominski and Linton. Isbell showed in 1982 that the Lawvere-Linton algebraic theory of V can be generated using a finite number of finitary operations, together with a single operation of countably infinite arity. In 1983, Banaschewski and Rosicky independently proved a conjecture of Bankston, establishing a strong negative result on the axiomatisability of KH^op. In particular, V is not a finitary variety--Isbell's result is best possible. The problem of axiomatising V by equations has remained open. Using the theory of Chang's MV-algebras as a key tool, along with Isbell's fundamental insight on the semantic nature of the infinitary operation, we provide a finite axiomatisation of V.Comment: 26 pages. Presentation improve
    corecore