2,566 research outputs found

    Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations

    Full text link
    We analyze the convergence of compressive sensing based sampling techniques for the efficient evaluation of functionals of solutions for a class of high-dimensional, affine-parametric, linear operator equations which depend on possibly infinitely many parameters. The proposed algorithms are based on so-called "non-intrusive" sampling of the high-dimensional parameter space, reminiscent of Monte-Carlo sampling. In contrast to Monte-Carlo, however, a functional of the parametric solution is then computed via compressive sensing methods from samples of functionals of the solution. A key ingredient in our analysis of independent interest consists in a generalization of recent results on the approximate sparsity of generalized polynomial chaos representations (gpc) of the parametric solution families, in terms of the gpc series with respect to tensorized Chebyshev polynomials. In particular, we establish sufficient conditions on the parametric inputs to the parametric operator equation such that the Chebyshev coefficients of the gpc expansion are contained in certain weighted ā„“p\ell_p-spaces for 0<pā‰¤10<p\leq 1. Based on this we show that reconstructions of the parametric solutions computed from the sampled problems converge, with high probability, at the L2L_2, resp. LāˆžL_\infty convergence rates afforded by best ss-term approximations of the parametric solution up to logarithmic factors.Comment: revised version, 27 page

    Sparse Deterministic Approximation of Bayesian Inverse Problems

    Get PDF
    We present a parametric deterministic formulation of Bayesian inverse problems with input parameter from infinite dimensional, separable Banach spaces. In this formulation, the forward problems are parametric, deterministic elliptic partial differential equations, and the inverse problem is to determine the unknown, parametric deterministic coefficients from noisy observations comprising linear functionals of the solution. We prove a generalized polynomial chaos representation of the posterior density with respect to the prior measure, given noisy observational data. We analyze the sparsity of the posterior density in terms of the summability of the input data's coefficient sequence. To this end, we estimate the fluctuations in the prior. We exhibit sufficient conditions on the prior model in order for approximations of the posterior density to converge at a given algebraic rate, in terms of the number NN of unknowns appearing in the parameteric representation of the prior measure. Similar sparsity and approximation results are also exhibited for the solution and covariance of the elliptic partial differential equation under the posterior. These results then form the basis for efficient uncertainty quantification, in the presence of data with noise
    • ā€¦
    corecore