12,167 research outputs found

    Q-CP: Learning Action Values for Cooperative Planning

    Get PDF
    Research on multi-robot systems has demonstrated promising results in manifold applications and domains. Still, efficiently learning an effective robot behaviors is very difficult, due to unstructured scenarios, high uncertainties, and large state dimensionality (e.g. hyper-redundant and groups of robot). To alleviate this problem, we present Q-CP a cooperative model-based reinforcement learning algorithm, which exploits action values to both (1) guide the exploration of the state space and (2) generate effective policies. Specifically, we exploit Q-learning to attack the curse-of-dimensionality in the iterations of a Monte-Carlo Tree Search. We implement and evaluate Q-CP on different stochastic cooperative (general-sum) games: (1) a simple cooperative navigation problem among 3 robots, (2) a cooperation scenario between a pair of KUKA YouBots performing hand-overs, and (3) a coordination task between two mobile robots entering a door. The obtained results show the effectiveness of Q-CP in the chosen applications, where action values drive the exploration and reduce the computational demand of the planning process while achieving good performance

    Simultaneous Perturbation Algorithms for Batch Off-Policy Search

    Full text link
    We propose novel policy search algorithms in the context of off-policy, batch mode reinforcement learning (RL) with continuous state and action spaces. Given a batch collection of trajectories, we perform off-line policy evaluation using an algorithm similar to that by [Fonteneau et al., 2010]. Using this Monte-Carlo like policy evaluator, we perform policy search in a class of parameterized policies. We propose both first order policy gradient and second order policy Newton algorithms. All our algorithms incorporate simultaneous perturbation estimates for the gradient as well as the Hessian of the cost-to-go vector, since the latter is unknown and only biased estimates are available. We demonstrate their practicality on a simple 1-dimensional continuous state space problem

    Bayesian Optimization for Adaptive MCMC

    Full text link
    This paper proposes a new randomized strategy for adaptive MCMC using Bayesian optimization. This approach applies to non-differentiable objective functions and trades off exploration and exploitation to reduce the number of potentially costly objective function evaluations. We demonstrate the strategy in the complex setting of sampling from constrained, discrete and densely connected probabilistic graphical models where, for each variation of the problem, one needs to adjust the parameters of the proposal mechanism automatically to ensure efficient mixing of the Markov chains.Comment: This paper contains 12 pages and 6 figures. A similar version of this paper has been submitted to AISTATS 2012 and is currently under revie

    Expected Policy Gradients

    Full text link
    We propose expected policy gradients (EPG), which unify stochastic policy gradients (SPG) and deterministic policy gradients (DPG) for reinforcement learning. Inspired by expected sarsa, EPG integrates across the action when estimating the gradient, instead of relying only on the action in the sampled trajectory. We establish a new general policy gradient theorem, of which the stochastic and deterministic policy gradient theorems are special cases. We also prove that EPG reduces the variance of the gradient estimates without requiring deterministic policies and, for the Gaussian case, with no computational overhead. Finally, we show that it is optimal in a certain sense to explore with a Gaussian policy such that the covariance is proportional to the exponential of the scaled Hessian of the critic with respect to the actions. We present empirical results confirming that this new form of exploration substantially outperforms DPG with the Ornstein-Uhlenbeck heuristic in four challenging MuJoCo domains.Comment: Conference paper, AAAI-18, 12 pages including supplemen

    MQLV: Optimal Policy of Money Management in Retail Banking with Q-Learning

    Get PDF
    Reinforcement learning has become one of the best approach to train a computer game emulator capable of human level performance. In a reinforcement learning approach, an optimal value function is learned across a set of actions, or decisions, that leads to a set of states giving different rewards, with the objective to maximize the overall reward. A policy assigns to each state-action pairs an expected return. We call an optimal policy a policy for which the value function is optimal. QLBS, Q-Learner in the Black-Scholes(-Merton) Worlds, applies the reinforcement learning concepts, and noticeably, the popular Q-learning algorithm, to the financial stochastic model of Black, Scholes and Merton. It is, however, specifically optimized for the geometric Brownian motion and the vanilla options. Its range of application is, therefore, limited to vanilla option pricing within financial markets. We propose MQLV, Modified Q-Learner for the Vasicek model, a new reinforcement learning approach that determines the optimal policy of money management based on the aggregated financial transactions of the clients. It unlocks new frontiers to establish personalized credit card limits or to fulfill bank loan applications, targeting the retail banking industry. MQLV extends the simulation to mean reverting stochastic diffusion processes and it uses a digital function, a Heaviside step function expressed in its discrete form, to estimate the probability of a future event such as a payment default. In our experiments, we first show the similarities between a set of historical financial transactions and Vasicek generated transactions and, then, we underline the potential of MQLV on generated Monte Carlo simulations. Finally, MQLV is the first Q-learning Vasicek-based methodology addressing transparent decision making processes in retail banking
    • …
    corecore