12,853 research outputs found

    Nature of complex singularities for the 2D Euler equation

    Full text link
    A detailed study of complex-space singularities of the two-dimensional incompressible Euler equation is performed in the short-time asymptotic r\'egime when such singularities are very far from the real domain; this allows an exact recursive determination of arbitrarily many spatial Fourier coefficients. Using high-precision arithmetic we find that the Fourier coefficients of the stream function are given over more than two decades of wavenumbers by \hat F(\k) = C(\theta) k^{-\alpha} \ue ^ {-k \delta(\theta)}, where \k = k(\cos \theta, \sin \theta). The prefactor exponent α\alpha, typically between 5/2 and 8/3, is determined with an accuracy better than 0.01. It depends on the initial condition but not on θ\theta. The vorticity diverges as sβs^{-\beta}, where α+β=7/2\alpha+\beta= 7/2 and ss is the distance to the (complex) singular manifold. This new type of non-universal singularity is permitted by the strong reduction of nonlinearity (depletion) which is associated to incompressibility. Spectral calculations show that the scaling reported above persists well beyond the time of validity of the short-time asymptotics. A simple model in which the vorticity is treated as a passive scalar is shown analytically to have universal singularities with exponent α=5/2\alpha =5/2.Comment: 22 pages, 24 figures, published version; a version of the paper with higher-quality figures is available at http://www.obs-nice.fr/etc7/euler.pd

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor
    corecore