5,626 research outputs found

    Modelling extinction and reignition in turbulent flames

    Get PDF
    The presented work attempts to extend the conditional moment closure method for noon-premixed. turbulent combustion to predict extinction and reignition phenomena in turbulent flames. The conditional moment closure method is one of a????class of conserved scalar modelling approaches in turbulent non-premixed combustion. where chemistry is treated as mainly dependend on the mixing of oxidizer and fuel. However. as designers of combustion devices aim for higher turbulence rates to enhance mixing and promote combustion, chemical conversion is not solely determined by the rate at which fuel and oxidizer are mixed, but kinetic effects become important. Therefore it is necessary in these cases. to consider a second variable to govern the evolution of the chemical system. This variable will parameterize the chemical conversion process from cold. mixed reactants at fixed eguivalence ratio to an eguilibrium state. Equations describing the chemical system as a function of these two variables, the conserved scalar, commonly referred to as mixture fraction and the progress variable. can be derived and constitute the doubly conditioned moment closure equations. However, solution of this set of equations is computationally expensive and key parameters describing the rate of dissipation of the progress variable, which is a reactive scalar, are not yet fully understood. By considering conditional fluctuations of the progress variable, applying simple relationships for scalar dissipation and using a pre-computed functional dependence of conditional moments on the progress variable, the effect of double conditioning on the chemical source term and on the overall chemistry predictions can be examined. The methodology is tested for its capability to predict the turbulent. piloted flames of the Sandia D-F series. These laboratory flames show an increasing degree of local extinction and reignition due to varying turbulence levels. Hence they provide an ideal benchmark for the study of models trying to predict these phenomena.Imperial Users onl

    Autoignition in nonpremixed flow

    Get PDF
    The objective of this investigation has been to improve understanding of autoignition processes in nonpremixed flow fields of the types encountered in Diesel-engine ignition, through theoretical analyses that employ asymptotic methods of applied mathematics. The work was intended to develop formulas and equations that can be used in activities of applied research, such as code development, aimed at providing tools useful for the design of Diesel engines. The formulas may also be used directly for ignition estimates.Characteristic time scales were identified for these ignition problems. Their relative magnitudes were employed to define different regimes of ignition and to obtain simplified partial differential equations that describe ignition in these regimes. Effects of turbulence on ignition were addressed. Special attention was devoted to unsteady mixing layers, involving both variable strain and variable pressure, for which ignition-time formulas were derived. In addition, ignition analyses were completed for variable-volume chambers with arbitrary initial spatial variations of temperature and composition, to determine pressure histories produced by ignition-front propagation. These studies were based on one-step, Arrhenius approximations for the chemical kinetics and were restricted to ignition stages that precede ordinary flame propagation. Additional work considered triple-flame propagation that can odcur in mixing layers after ignition, with this same chemical-kinetic description, and asymptotic analysis of n-heptane ignition on the basis of a four-step, semi-empirical model for the chemical kinetics. In this latter study, the region of negative effective overall activation energy, between 800 K and 1100 K, was identified as exhibiting unusual ignition dynamics, and the asymptotic ignition-time formulas were shown to give good agreement with predictions of numerical integrations. This research has helped to strengthen the foundations of ignition theory for nonuniform media. It provided simplified descriptions of ignition processes that can be employed in studies of Diesel combustion that are oriented more towards development than are the present investigations. The asymptotic methods employed in this work thus appear capable of providing quite useful results
    • …
    corecore