32 research outputs found

    Architectural Refinement in HETS

    Get PDF
    The main objective of this work is to bring a number of improvements to the Heterogeneous Tool Set HETS, both from a theoretical and an implementation point of view. In the first part of the thesis we present a number of recent extensions of the tool, among which declarative specifications of logics, generalized theoroidal comorphisms, heterogeneous colimits and integration of the logic of the term rewriting system Maude. In the second part we concentrate on the CASL architectural refinement language, that we equip with a notion of refinement tree and with calculi for checking correctness and consistency of refinements. Soundness and completeness of these calculi is also investigated. Finally, we present the integration of the VSE refinement method in HETS as an institution comorphism. Thus, the proof manangement component of HETS remains unmodified

    Recognition Situations Using Extended Dempster-Shafer Theory

    Get PDF
    Weiser’s [111] vision of pervasive computing describes a world where technology seamlessly integrates into the environment, automatically responding to peoples’ needs. Underpinning this vision is the ability of systems to automatically track the situation of a person. The task of situation recognition is critical and complex: noisy and unreliable sensor data, dynamic situations, unpredictable human behaviour and changes in the environment all contribute to the complexity. No single recognition technique is suitable in all environments. Factors such as availability of training data, ability to deal with uncertain information and transparency to the user will determine which technique to use in any particular environment. In this thesis, we propose the use of Dempster-Shafer theory as a theoretically sound basis for situation recognition - an approach that can reason with uncertainty, but which does not rely on training data. We use existing operations from Dempster-Shafer theory and create new operations to establish an evidence decision network. The network is used to generate and assess situation beliefs based on processed sensor data for an environment. We also define two specific extensions to Dempster-Shafer theory to enhance the knowledge that can be used for reasoning: 1) temporal knowledge about situation time patterns 2) quality of evidence sources (sensors) into the reasoning process. To validate the feasibility of our approach, this thesis creates evidence decision networks for two real-world data sets: a smart home data set and an officebased data set. We analyse situation recognition accuracy for each of the data sets, using the evidence decision networks with temporal/quality extensions. We also compare the evidence decision networks against two learning techniques: Naïve Bayes and J48 Decision Tree

    Dagstuhl News January - December 2000

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    An Ontology-Driven Sociomedical Web 3.0 Framework

    Get PDF
    Web 3.0, the web of social and semantic cooperation, calls for a methodological multidisciplinary architecture in order to reach its mainstream objectives. With the lack of such an architecture and the reliance of existing efforts on lightweight semantics and RDF graphs, this thesis proposes "Web3.OWL", an ontology-driven framework towards a Web 3.0 knowledge architecture. Meanwhile, the online social parenting data and their corresponding websites users known as "mommy bloggers" undergo one of the fastest online demographics growth, and the available literature reflects the very little attention this growth has so far been given and the various deficiencies the parenting domain suffers from; these deficiencies all fall under the umbrella of the scarcity of parenting sociomedical analysis and decision-support systems. The Web3.OWL framework puts forward an approach that relies on the Meta-Object Facility for Semantics standard (SMOF) for the management of its modeled OWL (Web Ontology Language) expressive domain ontologies on the one hand, and the coordination of its various underlined Web 3.0 prerequisite disciplines on the other. Setting off with a holistic portrayal of Web3.OWL’s components and workflow, the thesis progresses into a more analytic exploration of its main paradigms. Out of its different ontology-aware paradigms are notably highlighted both its methodology for expressiveness handling through modularization and projection techniques and algorithms, and its facilities for tagging inference, suggestion and processing. Web3.OWL, albeit generic by conception, proves its efficiency in solving the deficiencies and meeting the requirements of the sociomedical domain of interest. Its conceived ontology for parenting analysis and surveillance, baptised "ParOnt", strongly contributes to the backbone metamodel and the various constituents of this ontology-driven framework. Accordingly, as the workflow revolves around Description Logics principles, OWL 2 profiles along with standard and beyond-standard reasoning techniques, conducted experiments and competency questions are illustrated, thus establishing the required Web 3.0 outcomes. The empirical results of the diverse preliminary decision-support and recommendation services targeting parenting public awareness, orientation and education do ascertain, in conclusion, the value and potentials of the proposed conceptual framework

    FCAIR 2012 Formal Concept Analysis Meets Information Retrieval Workshop co-located with the 35th European Conference on Information Retrieval (ECIR 2013) March 24, 2013, Moscow, Russia

    Get PDF
    International audienceFormal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classifiation. The area came into being in the early 1980s and has since then spawned over 10000 scientific publications and a variety of practically deployed tools. FCA allows one to build from a data table with objects in rows and attributes in columns a taxonomic data structure called concept lattice, which can be used for many purposes, especially for Knowledge Discovery and Information Retrieval. The Formal Concept Analysis Meets Information Retrieval (FCAIR) workshop collocated with the 35th European Conference on Information Retrieval (ECIR 2013) was intended, on the one hand, to attract researchers from FCA community to a broad discussion of FCA-based research on information retrieval, and, on the other hand, to promote ideas, models, and methods of FCA in the community of Information Retrieval
    corecore