258,320 research outputs found

    Particle-number conservation in static-path approximation for thermal superfluid systems

    Full text link
    By applying particle-number projection to the static-path approximation (SPA), the heat capacity and the breakdown of pairing correlations are investigated in the thermally excited, superfluid systems 172Yb, 94Mo, and 56Fe. For the heavy nucleus 172Yb, the heat capacities in both the SPA and the number-projected SPA (NPSPA) exhibit an S shape; the difference between the SPA and NPSPA heat-capacity curves is not very large and the particle-number projection thereby enhances the S shape already seen in the SPA. The temperature at which the S-shape of heat capacity curve occurs parallels the temperature of the breakdown of pairing correlations as indicated by the effective pairing gap. However, for the comparatively lighter nuclei 94Mo and 56Fe, the SPA does not produce an S-shaped heat capacity on its own; only after particle-number projection the S shape appears in the heat-capacity curve. For 94Mo, we compare the NPSPA result with thermal odd-even mass differences, which are regarded as a direct measure of the pairing gap.Comment: 7 pages, 5 figures, accepted for publication in Phys. Rev.

    Currents and finite elements as tools for shape space

    Full text link
    The nonlinear spaces of shapes (unparameterized immersed curves or submanifolds) are of interest for many applications in image analysis, such as the identification of shapes that are similar modulo the action of some group. In this paper we study a general representation of shapes that is based on linear spaces and is suitable for numerical discretization, being robust to noise. We develop the theory of currents for shape spaces by considering both the analytic and numerical aspects of the problem. In particular, we study the analytical properties of the current map and the H−sH^{-s} norm that it induces on shapes. We determine the conditions under which the current determines the shape. We then provide a finite element discretization of the currents that is a practical computational tool for shapes. Finally, we demonstrate this approach on a variety of examples

    A second-order in time, BGN-based parametric finite element method for geometric flows of curves

    Full text link
    Over the last two decades, the field of geometric curve evolutions has attracted significant attention from scientific computing. One of the most popular numerical methods for solving geometric flows is the so-called BGN scheme, which was proposed by Barrett, Garcke, and Nurnberg (J. Comput. Phys., 222 (2007), pp. 441{467), due to its favorable properties (e.g., its computational efficiency and the good mesh property). However, the BGN scheme is limited to first-order accuracy in time, and how to develop a higher-order numerical scheme is challenging. In this paper, we propose a fully discrete, temporal second-order parametric finite element method, which incorporates a mesh regularization technique when necessary, for solving geometric flows of curves. The scheme is constructed based on the BGN formulation and a semi-implicit Crank-Nicolson leap-frog time stepping discretization as well as a linear finite element approximation in space. More importantly, we point out that the shape metrics, such as manifold distance and Hausdorff distance, instead of function norms, should be employed to measure numerical errors. Extensive numerical experiments demonstrate that the proposed BGN-based scheme is second-order accurate in time in terms of shape metrics. Moreover, by employing the classical BGN scheme as a mesh regularization technique when necessary, our proposed second-order scheme exhibits good properties with respect to the mesh distribution.Comment: 35 pages, 9 figure

    Numerical Methods in Shape Spaces and Optimal Branching Patterns

    Get PDF
    The contribution of this thesis is twofold. The main part deals with numerical methods in the context of shape space analysis, where the shape space at hand is considered as a Riemannian manifold. In detail, we apply and extend the time-discrete geodesic calculus (established by Rumpf and Wirth [WBRS11, RW15]) to the space of discrete shells, i.e. triangular meshes with fixed connectivity. The essential building block is a variational time-discretization of geodesic curves, which is based on a local approximation of the squared Riemannian distance on the manifold. On physical shape spaces this approximation can be derived e.g. from a dissimilarity measure. The dissimilarity measure between two shell surfaces can naturally be defined as an elastic deformation energy capturing both membrane and bending distortions. Combined with a non-conforming discretization of a physically sound thin shell model the time-discrete geodesic calculus applied to the space of discrete shells is shown to be suitable to solve important problems in computer graphics and animation. To extend the existing calculus, we introduce a generalized spline functional based on the covariant derivative along a curve in shape space whose minimizers can be considered as Riemannian splines. We establish a corresponding time-discrete functional that fits perfectly into the framework of Rumpf and Wirth, and prove this discretization to be consistent. Several numerical simulations reveal that the optimization of the spline functional—subject to appropriate constraints—can be used to solve the multiple interpolation problem in shape space, e.g. to realize keyframe animation. Based on the spline functional, we further develop a simple regression model which generalizes linear regression to nonlinear shape spaces. Numerical examples based on real data from anatomy and botany show the capability of the model. Finally, we apply the statistical analysis of elastic shape spaces presented by Rumpf and Wirth [RW09, RW11] to the space of discrete shells. To this end, we compute a Fréchet mean within a class of shapes bearing highly nonlinear variations and perform a principal component analysis with respect to the metric induced by the Hessian of an elastic shell energy. The last part of this thesis deals with the optimization of microstructures arising e.g. at austenite-martensite interfaces in shape memory alloys. For a corresponding scalar problem, Kohn and Müller [KM92, KM94] proved existence of a minimizer and provided a lower and an upper bound for the optimal energy. To establish the upper bound, they studied a particular branching pattern generated by mixing two different martensite phases. We perform a finite element simulation based on subdivision surfaces that suggests a topologically different class of branching patterns to represent an optimal microstructure. Based on these observations we derive a novel, low dimensional family of patterns and show—numerically and analytically—that our new branching pattern results in a significantly better upper energy bound

    Light Curves for Rapidly-Rotating Neutron Stars

    Get PDF
    We present raytracing computations for light emitted from the surface of a rapidly-rotating neutron star in order to construct light curves for X-ray pulsars and bursters. These calculations are for realistic models of rapidly-rotating neutron stars which take into account both the correct exterior metric and the oblate shape of the star. We find that the most important effect arising from rotation comes from the oblate shape of the rotating star. We find that approximating a rotating neutron star as a sphere introduces serious errors in fitted values of the star's radius and mass if the rotation rate is very large. However, in most cases acceptable fits to the ratio M/R can be obtained with the spherical approximation.Comment: Accepted by the Astrophysical Journal. 13 pages & 7 figure

    Two Sets of Simple Formulae to Estimating Fractal Dimension of Irregular Boundaries

    Full text link
    Irregular boundary lines can be characterized by fractal dimension, which provides important information for spatial analysis of complex geographical phenomena such as cities. However, it is difficult to calculate fractal dimension of boundaries systematically when image data is limited. An approximation estimation formulae of boundary dimension based on square is widely applied in urban and ecological studies. However, the boundary dimension is sometimes overestimated. This paper is devoted to developing a series of practicable formulae for boundary dimension estimation using ideas from fractals. A number of regular figures are employed as reference shapes, from which the corresponding geometric measure relations are constructed; from these measure relations, two sets of fractal dimension estimation formulae are derived for describing fractal-like boundaries. Correspondingly, a group of shape indexes can be defined. A finding is that different formulae have different merits and spheres of application, and the second set of boundary dimensions is a function of the shape indexes. Under condition of data shortage, these formulae can be utilized to estimate boundary dimension values rapidly. Moreover, the relationships between boundary dimension and shape indexes are instructive to understand the association and differences between characteristic scales and scaling. The formulae may be useful for the pre-fractal studies in geography, geomorphology, ecology, landscape science, and especially, urban science.Comment: 28 pages, 2 figures, 9 table
    • …
    corecore