23 research outputs found

    Approximation hardness of deadline-TSP reoptimization

    Get PDF
    AbstractGiven an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e.g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm-U (local-modification-U) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i.e.,whether lm-U is computationally more tractable than U. While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem

    Reoptimization of Some Maximum Weight Induced Hereditary Subgraph Problems

    Get PDF
    The reoptimization issue studied in this paper can be described as follows: given an instance I of some problem Π, an optimal solution OPT for Π in I and an instance I′ resulting from a local perturbation of I that consists of insertions or removals of a small number of data, we wish to use OPT in order to solve Π in I', either optimally or by guaranteeing an approximation ratio better than that guaranteed by an ex nihilo computation and with running time better than that needed for such a computation. We use this setting in order to study weighted versions of several representatives of a broad class of problems known in the literature as maximum induced hereditary subgraph problems. The main problems studied are max independent set, max k-colorable subgraph and max split subgraph under vertex insertions and deletion

    New algorithms for Steiner tree reoptimization

    Get PDF
    Reoptimization is a setting in which we are given an (near) optimal solution of a problem instance and a local modification that slightly changes the instance. The main goal is that of finding an (near) optimal solution of the modified instance. We investigate one of the most studied scenarios in reoptimization known as Steiner tree reoptimization. Steiner tree reoptimization is a collection of strongly NP-hard optimization problems that are defined on top of the classical Steiner tree problem and for which several constant-factor approximation algorithms have been designed in the last decade. In this paper we improve upon all these results by developing a novel technique that allows us to design polynomial-time approximation schemes. Remarkably, prior to this paper, no approximation algorithm better than recomputing a solution from scratch was known for the elusive scenario in which the cost of a single edge decreases. Our results are best possible since none of the problems addressed in this paper admits a fully polynomial-time approximation scheme, unless P=NP

    Reoptimization of the Shortest Common Superstring Problem

    Get PDF
    A reoptimization problem describes the following scenario: given an instance of an optimization problem together with an optimal solution for it, we want to find a good solution for a locally modified instance. In this paper, we deal with reoptimization variants of the shortest common superstring problem (SCS) where the local modifications consist of adding or removing a single string. We show the NP-hardness of these reoptimization problems and design several approximation algorithms for them. First, we use a technique of iteratively using any SCS algorithm to design an approximation algorithm for the reoptimization variant of adding a string whose approximation ratio is arbitrarily close to 8/5 and another algorithm for deleting a string with a ratio tending to 13/7. Both algorithms significantly improve over the best currently known SCS approximation ratio of 2.5. Additionally, this iteration technique can be used to design an improved SCS approximation algorithm (without reoptimization) if the input instance contains a long string, which might be of independent interest. However, these iterative algorithms are relatively slow. Thus, we present another, faster approximation algorithm for inserting a string which is based on cutting the given optimal solution and achieves an approximation ratio of 11/6. Moreover, we give some lower bounds on the approximation ratio which can be achieved by algorithms that use such cutting strategie

    Robust Reoptimization of Steiner Trees

    Get PDF
    In reoptimization, one is given an optimal solution to a problem instance and a (locally) modified instance. The goal is to obtain a solution for the modified instance. We aim to use information obtained from the given solution in order to obtain a better solution for the new instance than we are able to compute from scratch. In this paper, we consider Steiner tree reoptimization and address the optimality requirement of the provided solution. Instead of assuming that we are provided an optimal solution, we relax the assumption to the more realistic scenario where we are given an approximate solution with an upper bound on its performance guarantee. We show that for Steiner tree reoptimization there is a clear separation between local modifications where optimality is crucial for obtaining improved approximations and those instances where approximate solutions are acceptable starting points. For some of the local modifications that have been considered in previous research, we show that for every fixed ε>0, approximating the reoptimization problem with respect to a given (1+ε)-approximation is as hard as approximating the Steiner tree problem itself. In contrast, with a given optimal solution to the original problem it is known that one can obtain considerably improved results. Furthermore, we provide a new algorithmic technique that, with some further insights, allows us to obtain improved performance guarantees for Steiner tree reoptimization with respect to all remaining local modifications that have been considered in the literature: a required node of degree more than one becomes a Steiner node; a Steiner node becomes a required node; the cost of one edge is increased

    Robust Reoptimization of Steiner Trees

    Get PDF
    In reoptimization problems, one is given an optimal solution to a problem instance and a local modification of the instance. The goal is to obtain a solution for the modified instance. The additional information about the instance provided by the given solution plays a central role: we aim to use that information in order to obtain better solutions than we are able to compute from scratch. In this paper, we consider Steiner tree reoptimization and address the optimality requirement of the provided solution. Instead of assuming that we are provided an optimal solution, we relax the assumption to the more realistic scenario where we are given an approximate solution with an upper bound on its performance guarantee. We show that for Steiner tree reoptimization there is a clear separation between local modifications where optimality is crucial for obtaining improved approximations and those instances where approximate solutions are acceptable starting points. For some of the local modifications that have been considered in previous research, we show that for every fixed epsilon > 0, approximating the reoptimization problem with respect to a given (1+epsilon)-approximation is as hard as approximating the Steiner tree problem itself (whereas with a given optimal solution to the original problem it is known that one can obtain considerably improved results). Furthermore, we provide a new algorithmic technique that, with some further insights, allows us to obtain improved performance guarantees for Steiner tree reoptimization with respect to all remaining local modifications that have been considered in the literature: a required node of degree more than one becomes a Steiner node; a Steiner node becomes a required node; the cost of one edge is increased

    Adversarial patrolling with spatially uncertain alarm signals

    Get PDF
    When securing complex infrastructures or large environments, constant surveillance of every area is not affordable. To cope with this issue, a common countermeasure is the usage of cheap but wide-ranged sensors, able to detect suspicious events that occur in large areas, supporting patrollers to improve the effectiveness of their strategies. However, such sensors are commonly affected by uncertainty. In the present paper, we focus on spatially uncertain alarm signals. That is, the alarm system is able to detect an attack but it is uncertain on the exact position where the attack is taking place. This is common when the area to be secured is wide, such as in border patrolling and fair site surveillance. We propose, to the best of our knowledge, the first Patrolling Security Game where a Defender is supported by a spatially uncertain alarm system, which non-deterministically generates signals once a target is under attack. We show that finding the optimal strategy is FNP-hard even in tree graphs and APX-hard in arbitrary graphs. We provide two (exponential time) exact algorithms and two (polynomial time) approximation algorithms. Finally, we show that, without false positives and missed detections, the best patrolling strategy reduces to stay in a place, wait for a signal, and respond to it at best. This strategy is optimal even with non-negligible missed detection rates, which, unfortunately, affect every commercial alarm system. We evaluate our methods in simulation, assessing both quantitative and qualitative aspects

    Auction and Swarm Multi-Robot Task Allocation Algorithms in Real Time Scenarios

    Get PDF
    A group of several autonomous robots (multi-robot system) can perform tasks that with only one of them would be impossible to carry out or would take much more time, moreover, they are more robust and even can be cheaper, etc than systems with a single robot. In general, the problems that have to be solved to benefit from all these advantage
    corecore