1,091 research outputs found

    Heart-like fair queuing algorithms (HLFQA)

    Get PDF
    We propose a new family of fair, work conserving traffic scheduling mechanisms that imitate the behavior of the human heart in the cardiovascular system. The algorithms have MAX (where MAX is the maximum packet size) fairness and O(log N) complexity and thus compare favorably with existing algorithms. The algorithms are simple enough to be implemented in hardwar

    Breaking the Legend: Maxmin Fairness notion is no longer effective

    Get PDF
    In this paper we analytically propose an alternative approach to achieve better fairness in scheduling mechanisms which could provide better quality of service particularly for real time application. Our proposal oppose the allocation of the bandwidth which adopted by all previous scheduling mechanism. It rather adopt the opposition approach be proposing the notion of Maxmin-charge which fairly distribute the congestion. Furthermore, analytical proposition of novel mechanism named as Just Queueing is been demonstrated.Comment: 8 Page

    VLSI implementation of a fairness ATM buffer system

    Get PDF

    State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy

    Full text link
    We consider a connection-level model of Internet congestion control, introduced by Massouli\'{e} and Roberts [Telecommunication Systems 15 (2000) 185--201], that represents the randomly varying number of flows present in a network. Here, bandwidth is shared fairly among elastic document transfers according to a weighted α\alpha-fair bandwidth sharing policy introduced by Mo and Walrand [IEEE/ACM Transactions on Networking 8 (2000) 556--567] [α(0,)\alpha\in (0,\infty)]. Assuming Poisson arrivals and exponentially distributed document sizes, we focus on the heavy traffic regime in which the average load placed on each resource is approximately equal to its capacity. A fluid model (or functional law of large numbers approximation) for this stochastic model was derived and analyzed in a prior work [Ann. Appl. Probab. 14 (2004) 1055--1083] by two of the authors. Here, we use the long-time behavior of the solutions of the fluid model established in that paper to derive a property called multiplicative state space collapse, which, loosely speaking, shows that in diffusion scale, the flow count process for the stochastic model can be approximately recovered as a continuous lifting of the workload process.Comment: Published in at http://dx.doi.org/10.1214/08-AAP591 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Adaptive admission control in a NGN service platform

    Get PDF
    http://wts2010.eng.usf.edu/In NGN service-provisioning platforms the existence of an efficient and flexible admission control mechanism is essential for providing quality of service in a reliable and stable way, avoiding congestion scenarios caused by indiscriminate and uncontrolled service requests. The capability of modulating and regulating the rate of call acceptance, and provide service differentiation allow indirect control of the load submitted to the platform. This paper presents a service admission control solution that enables to differentiate, limit and modulate the rate by which service requests are submitted into a NGN service-provisioning platform. The solution is focused on providing a fair level of bandwidth sharing among service classes, in a configurable and dynamic way so that it can adapt the distribution by which service requests are served. To sustain the design goals of our solution, major scheduling disciplines and rate control mechanisms are here studied and compared in order to elect the more adequate components. The implemented solution was submitted to unit and charge tests; the results show its effectiveness and robustness in controlling and differentiating incoming service calls

    Proportional delay differentiation employing the CBQ service discipline

    Full text link
    corecore