358 research outputs found

    Local Covering Optimality of Lattices: Leech Lattice versus Root Lattice E8

    Full text link
    We show that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. We show that a similar result is false for the root lattice E8. For this we construct a less dense covering lattice whose Delone subdivision has a common refinement with the Delone subdivision of E8. The new lattice yields a sphere covering which is more than 12% less dense than the formerly best known given by the lattice A8*. Currently, the Leech lattice is the first and only known example of a locally optimal lattice covering having a non-simplicial Delone subdivision. We hereby in particular answer a question of Dickson posed in 1968. By showing that the Leech lattice is rigid our answer is even strongest possible in a sense.Comment: 13 pages; (v2) major revision: proof of rigidity corrected, full discussion of E8-case included, src of (v3) contains MAGMA program, (v4) some correction

    Higher dimensional cluster combinatorics and representation theory

    Full text link
    Higher Auslander algebras were introduced by Iyama generalizing classical concepts from representation theory of finite dimensional algebras. Recently these higher analogues of classical representation theory have been increasingly studied. Cyclic polytopes are classical objects of study in convex geometry. In particular, their triangulations have been studied with a view towards generalizing the rich combinatorial structure of triangulations of polygons. In this paper, we demonstrate a connection between these two seemingly unrelated subjects. We study triangulations of even-dimensional cyclic polytopes and tilting modules for higher Auslander algebras of linearly oriented type A which are summands of the cluster tilting module. We show that such tilting modules correspond bijectively to triangulations. Moreover mutations of tilting modules correspond to bistellar flips of triangulations. For any d-representation finite algebra we introduce a certain d-dimensional cluster category and study its cluster tilting objects. For higher Auslander algebras of linearly oriented type A we obtain a similar correspondence between cluster tilting objects and triangulations of a certain cyclic polytope. Finally we study certain functions on generalized laminations in cyclic polytopes, and show that they satisfy analogues of tropical cluster exchange relations. Moreover we observe that the terms of these exchange relations are closely related to the terms occuring in the mutation of cluster tilting objects.Comment: 41 pages. v4: minor corrections throughout the pape

    Asymptotically efficient triangulations of the d-cube

    Full text link
    Let PP and QQ be polytopes, the first of "low" dimension and the second of "high" dimension. We show how to triangulate the product P×QP \times Q efficiently (i.e., with few simplices) starting with a given triangulation of QQ. Our method has a computational part, where we need to compute an efficient triangulation of P×ΔmP \times \Delta^m, for a (small) natural number mm of our choice. Δm\Delta^m denotes the mm-simplex. Our procedure can be applied to obtain (asymptotically) efficient triangulations of the cube InI^n: We decompose In=Ik×In−kI^n = I^k \times I^{n-k}, for a small kk. Then we recursively assume we have obtained an efficient triangulation of the second factor and use our method to triangulate the product. The outcome is that using k=3k=3 and m=2m=2, we can triangulate InI^n with O(0.816nn!)O(0.816^{n} n!) simplices, instead of the O(0.840nn!)O(0.840^{n} n!) achievable before.Comment: 19 pages, 6 figures. Only minor changes from previous versions, some suggested by anonymous referees. Paper accepted in "Discrete and Computational Geometry

    Cubulations, immersions, mappability and a problem of Habegger

    Get PDF
    The aim of this paper (inspired from a problem of Habegger) is to describe the set of cubical decompositions of compact manifolds mod out by a set of combinatorial moves analogous to the bistellar moves considered by Pachner, which we call bubble moves. One constructs a surjection from this set onto the the bordism group of codimension one immersions in the manifold. The connected sums of manifolds and immersions induce multiplicative structures which are respected by this surjection. We prove that those cubulations which map combinatorially into the standard decomposition of Rn{\bf R}^n for large enough nn (called mappable), are equivalent. Finally we classify the cubulations of the 2-sphere.Comment: Revised version, Ann.Sci.Ecole Norm. Sup. (to appear

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than n−dn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    Triangulations

    Get PDF
    The earliest work in topology was often based on explicit combinatorial models – usually triangulations – for the spaces being studied. Although algebraic methods in topology gradually replaced combinatorial ones in the mid-1900s, the emergence of computers later revitalized the study of triangulations. By now there are several distinct mathematical communities actively doing work on different aspects of triangulations. The goal of this workshop was to bring the researchers from these various communities together to stimulate interaction and to benefit from the exchange of ideas and methods

    Geometry of Log-Concave Density Estimation

    Full text link
    Shape-constrained density estimation is an important topic in mathematical statistics. We focus on densities on Rd\mathbb{R}^d that are log-concave, and we study geometric properties of the maximum likelihood estimator (MLE) for weighted samples. Cule, Samworth, and Stewart showed that the logarithm of the optimal log-concave density is piecewise linear and supported on a regular subdivision of the samples. This defines a map from the space of weights to the set of regular subdivisions of the samples, i.e. the face poset of their secondary polytope. We prove that this map is surjective. In fact, every regular subdivision arises in the MLE for some set of weights with positive probability, but coarser subdivisions appear to be more likely to arise than finer ones. To quantify these results, we introduce a continuous version of the secondary polytope, whose dual we name the Samworth body. This article establishes a new link between geometric combinatorics and nonparametric statistics, and it suggests numerous open problems.Comment: 22 pages, 3 figure
    • …
    corecore