8,807 research outputs found

    Projections of determinantal point processes

    Get PDF
    Let x={x(1),,x(n)}\mathbf x=\{x^{(1)},\dots,x^{(n)}\} be a space filling-design of nn points defined in [0,1]d[0{,}1]^d. In computer experiments, an important property seeked for x\mathbf x is a nice coverage of [0,1]d[0{,}1]^d. This property could be desirable as well as for any projection of x\mathbf x onto [0,1]ι[0{,}1]^\iota for ι<d\iota<d . Thus we expect that xI={xI(1),,xI(n)}\mathbf x_I=\{x_I^{(1)},\dots,x_I^{(n)}\}, which represents the design x\mathbf x with coordinates associated to any index set I{1,,d}I\subseteq\{1,\dots,d\}, remains regular in [0,1]ι[0{,}1]^\iota where ι\iota is the cardinality of II. This paper examines the conservation of nice coverage by projection using spatial point processes, and more specifically using the class of determinantal point processes. We provide necessary conditions on the kernel defining these processes, ensuring that the projected point process XI\mathbf{X}_I is repulsive, in the sense that its pair correlation function is uniformly bounded by 1, for all I{1,,d}I\subseteq\{1,\dots,d\}. We present a few examples, compare them using a new normalized version of Ripley's function. Finally, we illustrate the interest of this research for Monte-Carlo integration

    Decomposition by Partial Linearization: Parallel Optimization of Multi-Agent Systems

    Full text link
    We propose a novel decomposition framework for the distributed optimization of general nonconvex sum-utility functions arising naturally in the system design of wireless multiuser interfering systems. Our main contributions are: i) the development of the first class of (inexact) Jacobi best-response algorithms with provable convergence, where all the users simultaneously and iteratively solve a suitably convexified version of the original sum-utility optimization problem; ii) the derivation of a general dynamic pricing mechanism that provides a unified view of existing pricing schemes that are based, instead, on heuristics; and iii) a framework that can be easily particularized to well-known applications, giving rise to very efficient practical (Jacobi or Gauss-Seidel) algorithms that outperform existing adhoc methods proposed for very specific problems. Interestingly, our framework contains as special cases well-known gradient algorithms for nonconvex sum-utility problems, and many blockcoordinate descent schemes for convex functions.Comment: submitted to IEEE Transactions on Signal Processin

    Fast Distributed Approximation for Max-Cut

    Full text link
    Finding a maximum cut is a fundamental task in many computational settings. Surprisingly, it has been insufficiently studied in the classic distributed settings, where vertices communicate by synchronously sending messages to their neighbors according to the underlying graph, known as the LOCAL\mathcal{LOCAL} or CONGEST\mathcal{CONGEST} models. We amend this by obtaining almost optimal algorithms for Max-Cut on a wide class of graphs in these models. In particular, for any ϵ>0\epsilon > 0, we develop randomized approximation algorithms achieving a ratio of (1ϵ)(1-\epsilon) to the optimum for Max-Cut on bipartite graphs in the CONGEST\mathcal{CONGEST} model, and on general graphs in the LOCAL\mathcal{LOCAL} model. We further present efficient deterministic algorithms, including a 1/31/3-approximation for Max-Dicut in our models, thus improving the best known (randomized) ratio of 1/41/4. Our algorithms make non-trivial use of the greedy approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing an unconstrained (non-monotone) submodular function, which may be of independent interest

    Application of The Method of Elastic Maps In Analysis of Genetic Texts

    Get PDF
    Abstract - Method of elastic maps ( http://cogprints.ecs.soton.ac.uk/archive/00003088/ and http://cogprints.ecs.soton.ac.uk/archive/00003919/ ) allows us to construct efficiently 1D, 2D and 3D non-linear approximations to the principal manifolds with different topology (piece of plane, sphere, torus etc.) and to project data onto it. We describe the idea of the method and demonstrate its applications in analysis of genetic sequences. The animated 3D-scatters are available on our web-site: http://www.ihes.fr/~zinovyev/7clusters/ We found the universal cluster structure of genetic sequences, and demonstrated the thin structure of these clusters for coding regions. This thin structure is related to different translational efficiency

    Normal cycles and curvature measures of sets with d.c. boundary

    Full text link
    We show that for every compact domain in a Euclidean space with d.c. (delta-convex) boundary there exists a unique Legendrian cycle such that the associated curvature measures fulfil a local version of the Gauss-Bonnet formula. This was known in dimensions two and three and was open in higher dimensions. In fact, we show this property for a larger class of sets including also lower-dimensional sets. We also describe the local index function of the Legendrian cycles and we show that the associated curvature measures fulfill the Crofton formula.Comment: 22 pp, corrected versio
    corecore