27,273 research outputs found

    Tsunami generation by paddle motion and its interaction with a beach: Lagrangian modelling and experiment

    Get PDF
    A 2D Lagrangian numerical wave model is presented and validated against a set of physical wave-flume experiments on interaction of tsunami waves with a sloping beach. An iterative methodology is proposed and applied for experimental generation of tsunami-like waves using a piston-type wavemaker with spectral control. Three distinct types of wave interaction with the beach are observed with forming of plunging or collapsing breaking waves. The Lagrangian model demonstrates good agreement with experiments. It proves to be efficient in modelling both wave propagation along the flume and initial stages of strongly non-linear wave interaction with a beach involving plunging breaking. Predictions of wave runup are in agreement with both experimental results and the theoretical runup law

    Analysis of error propagation in particle filters with approximation

    Full text link
    This paper examines the impact of approximation steps that become necessary when particle filters are implemented on resource-constrained platforms. We consider particle filters that perform intermittent approximation, either by subsampling the particles or by generating a parametric approximation. For such algorithms, we derive time-uniform bounds on the weak-sense LpL_p error and present associated exponential inequalities. We motivate the theoretical analysis by considering the leader node particle filter and present numerical experiments exploring its performance and the relationship to the error bounds.Comment: Published in at http://dx.doi.org/10.1214/11-AAP760 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Wall Adhesion and Constitutive Modelling of Strong Colloidal Gels

    Full text link
    Wall adhesion effects during batch sedimentation of strongly flocculated colloidal gels are commonly assumed to be negligible. In this study in-situ measurements of colloidal gel rheology and solids volume fraction distribution suggest the contrary, where significant wall adhesion effects are observed in a 110mm diameter settling column. We develop and validate a mathematical model for the equilibrium stress state in the presence of wall adhesion under both viscoplastic and viscoelastic constitutive models. These formulations highlight fundamental issues regarding the constitutive modeling of colloidal gels, specifically the relative utility and validity of viscoplastic and viscoelastic rheological models under arbitrary tensorial loadings. The developed model is validated against experimental data, which points toward a novel method to estimate the shear and compressive yield strength of strongly flocculated colloidal gels from a series of equilibrium solids volume fraction profiles over various column widths.Comment: 37 pages, 12 figures, submitted to Journal of Rheolog

    A literature survey of low-rank tensor approximation techniques

    Full text link
    During the last years, low-rank tensor approximation has been established as a new tool in scientific computing to address large-scale linear and multilinear algebra problems, which would be intractable by classical techniques. This survey attempts to give a literature overview of current developments in this area, with an emphasis on function-related tensors

    Validity of the Cauchy-Born rule applied to discrete cellular-scale models of biological tissues

    Get PDF
    The development of new models of biological tissues that consider cells in a discrete manner is becoming increasingly popular as an alternative to PDE-based continuum methods, although formal relationships between the discrete and continuum frameworks remain to be established. For crystal mechanics, the discrete-to-continuum bridge is often made by assuming that local atom displacements can be mapped homogeneously from the mesoscale deformation gradient, an assumption known as the Cauchy-Born rule (CBR). Although the CBR does not hold exactly for non-crystalline materials, it may still be used as a first order approximation for analytic calculations of effective stresses or strain energies. In this work, our goal is to investigate numerically the applicability of the CBR to 2-D cellular-scale models by assessing the mechanical behaviour of model biological tissues, including crystalline (honeycomb) and non-crystalline reference states. The numerical procedure consists in precribing an affine deformation on the boundary cells and computing the position of internal cells. The position of internal cells is then compared with the prediction of the CBR and an average deviation is calculated in the strain domain. For centre-based models, we show that the CBR holds exactly when the deformation gradient is relatively small and the reference stress-free configuration is defined by a honeycomb lattice. We show further that the CBR may be used approximately when the reference state is perturbed from the honeycomb configuration. By contrast, for vertex-based models, a similar analysis reveals that the CBR does not provide a good representation of the tissue mechanics, even when the reference configuration is defined by a honeycomb lattice. The paper concludes with a discussion of the implications of these results for concurrent discrete/continuous modelling, adaptation of atom-to-continuum (AtC) techniques to biological tissues and model classification

    Lagrangian ADER-WENO Finite Volume Schemes on Unstructured Triangular Meshes Based On Genuinely Multidimensional HLL Riemann Solvers

    Full text link
    In this paper we use the genuinely multidimensional HLL Riemann solvers recently developed by Balsara et al. to construct a new class of computationally efficient high order Lagrangian ADER-WENO one-step ALE finite volume schemes on unstructured triangular meshes. A nonlinear WENO reconstruction operator allows the algorithm to achieve high order of accuracy in space, while high order of accuracy in time is obtained by the use of an ADER time-stepping technique based on a local space-time Galerkin predictor. The multidimensional HLL and HLLC Riemann solvers operate at each vertex of the grid, considering the entire Voronoi neighborhood of each node and allows for larger time steps than conventional one-dimensional Riemann solvers. The results produced by the multidimensional Riemann solver are then used twice in our one-step ALE algorithm: first, as a node solver that assigns a unique velocity vector to each vertex, in order to preserve the continuity of the computational mesh; second, as a building block for genuinely multidimensional numerical flux evaluation that allows the scheme to run with larger time steps compared to conventional finite volume schemes that use classical one-dimensional Riemann solvers in normal direction. A rezoning step may be necessary in order to overcome element overlapping or crossing-over. We apply the method presented in this article to two systems of hyperbolic conservation laws, namely the Euler equations of compressible gas dynamics and the equations of ideal classical magneto-hydrodynamics (MHD). Convergence studies up to fourth order of accuracy in space and time have been carried out. Several numerical test problems have been solved to validate the new approach
    • …
    corecore