3,134 research outputs found

    Wavelets and Fast Numerical Algorithms

    Full text link
    Wavelet based algorithms in numerical analysis are similar to other transform methods in that vectors and operators are expanded into a basis and the computations take place in this new system of coordinates. However, due to the recursive definition of wavelets, their controllable localization in both space and wave number (time and frequency) domains, and the vanishing moments property, wavelet based algorithms exhibit new and important properties. For example, the multiresolution structure of the wavelet expansions brings about an efficient organization of transformations on a given scale and of interactions between different neighbouring scales. Moreover, wide classes of operators which naively would require a full (dense) matrix for their numerical description, have sparse representations in wavelet bases. For these operators sparse representations lead to fast numerical algorithms, and thus address a critical numerical issue. We note that wavelet based algorithms provide a systematic generalization of the Fast Multipole Method (FMM) and its descendents. These topics will be the subject of the lecture. Starting from the notion of multiresolution analysis, we will consider the so-called non-standard form (which achieves decoupling among the scales) and the associated fast numerical algorithms. Examples of non-standard forms of several basic operators (e.g. derivatives) will be computed explicitly.Comment: 32 pages, uuencoded tar-compressed LaTeX file. Uses epsf.sty (see `macros'

    Steerable Discrete Cosine Transform

    Get PDF
    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms

    Sparse Approximation Via Iterative Thresholding

    Get PDF
    The well-known shrinkage technique is still relevant for contemporary signal processing problems over redundant dictionaries. We present theoretical and empirical analyses for two iterative algorithms for sparse approximation that use shrinkage. The GENERAL IT algorithm amounts to a Landweber iteration with nonlinear shrinkage at each iteration step. The BLOCK IT algorithm arises in morphological components analysis. A sufficient condition for which General IT exactly recovers a sparse signal is presented, in which the cumulative coherence function naturally arises. This analysis extends previous results concerning the Orthogonal Matching Pursuit (OMP) and Basis Pursuit (BP) algorithms to IT algorithms
    • …
    corecore